Abstract

We have established a frequency measurement system for frequency-stabilized lasers operating in telecommunication wavelength bands, by using a femtosecond optical comb without the need for carrier envelope offset frequency control. This system has been used to measure the frequency of an acetylene-stabilized laser operating at 1542 nm for a period of over 10 hours. The frequency stability of the acetylene-stabilized laser is estimated to be 3×10-12 for a 10-s averaging time, improving toward 1×10-13 after 10000 s. We have measured three acetylene-stabilized lasers, including one commercially available laser, and confirmed that the frequency values are in good agreement (a frequency scatter of 2.1 kHz) with previously measured results reported by different institutes. In addition to the P(16) line of acetylene at 1542 nm, we measured the absolute frequencies of the P(24) line at 1547 nm, the P(1) line at 1534 nm, and the R(5) line at 1530 nm with a view to improving the accuracy of the acetylene frequency atlas. The acetylene-stabilized laser serves as an important optical frequency standard for telecommunication applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. de Labachelerie, K. Nakagawa, Y. Awaji, M. Ohtsu, �??High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines,�?? Opt. Lett. 20, 572-574 (1995)
    [CrossRef]
  2. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, �??Accurate optical frequency atlas of the 1.5-μm bands of acetylene,�?? J. Opt. Soc. Am. B 13, 2708-2714 (1996)
    [CrossRef]
  3. A. Onae, K. Minoshima, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, �??Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,�?? IEEE Trans. Instrum. Meas. 48, 563-566 (1999)
    [CrossRef]
  4. A. Onae, T. Ikegami, K. Sugiyama, F-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, S. Harada, �??Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-colour mode-locked fiber laser,�?? Opt. Commun. 183, 181-187 (2000)
    [CrossRef]
  5. T. J. Quinn, �??Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),�?? Metrologia 40, 103-133 (2003)
    [CrossRef]
  6. Th. Udem, J. Reichert, R. Holzwarth, T. W. Haensch, �??Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999)
    [CrossRef]
  7. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
    [CrossRef] [PubMed]
  8. F. -L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, K. Nakagawa, �??Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,�?? Opt. Lett. 28, 2324-2326 (2003)
    [CrossRef] [PubMed]
  9. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, W. R. C. Rowley, �??Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb,�?? Opt. Lett. 29, 566-568 (2004)
    [CrossRef] [PubMed]
  10. A. Czajkowski, J. E. Bernard, A. A. Madej, R. S. Windeler, �??Absolute frequency measurement of acetylene transitions in the region of 1540 nm,�?? Appl. Phys. B 79, 45-50 (2004)
    [CrossRef]
  11. J. C. Knight, �??Photonic crystal fibers,�?? Nature 424, 847-851 (2003)
    [CrossRef] [PubMed]
  12. Ronald Holzwarth, Max Planck Inst Quantum Opt, D-85748 Garching, and Menlo Systems GmbH, D-82152 Munich, Germany (personal communication, 2004).
  13. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann, �??Frequency metrology with a turnkey all-fiber system,�?? Opt. Lett. 29, 2467-2469 (2004)
    [CrossRef] [PubMed]
  14. T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, �??Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,�?? Opt. Lett. 27, 1842-1844 (2002)
    [CrossRef]
  15. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C. Chardonnet, �??Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,�?? Appl. Phys. B 78, 25-30 (2004)
    [CrossRef]
  16. O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kaertner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, J. Ye, �??Experimental implementation of optical clockwork without carrier-envelope phase control,�?? Opt. Lett. 29, 2806-2808 (2004)
    [CrossRef] [PubMed]
  17. M. Zimmermann, Ch. Gohle, R. Holzwarth, Th. Udem, T. Haensch, �??Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,�?? Opt. Lett. 29, 310-312 (2004)
    [CrossRef] [PubMed]
  18. F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, H. Matsumoto, �??Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,�?? Opt. Commun. 235, 377-385 (2004)
    [CrossRef]
  19. A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, �??Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser,�?? presented at the 2004 Conference on Precision Electromagnetic Measurements, London, United Kingdom, 27 June �?? 2 July, 2004

2004 Conference on Precision Electromagn (1)

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, �??Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser,�?? presented at the 2004 Conference on Precision Electromagnetic Measurements, London, United Kingdom, 27 June �?? 2 July, 2004

Appl. Phys. B (2)

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C. Chardonnet, �??Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,�?? Appl. Phys. B 78, 25-30 (2004)
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, R. S. Windeler, �??Absolute frequency measurement of acetylene transitions in the region of 1540 nm,�?? Appl. Phys. B 79, 45-50 (2004)
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Onae, K. Minoshima, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, �??Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,�?? IEEE Trans. Instrum. Meas. 48, 563-566 (1999)
[CrossRef]

J. Opt. Soc. Am. B (1)

Metrologia (1)

T. J. Quinn, �??Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),�?? Metrologia 40, 103-133 (2003)
[CrossRef]

Nature (1)

J. C. Knight, �??Photonic crystal fibers,�?? Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

Opt. Commun. (2)

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, H. Matsumoto, �??Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,�?? Opt. Commun. 235, 377-385 (2004)
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, S. Harada, �??Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-colour mode-locked fiber laser,�?? Opt. Commun. 183, 181-187 (2000)
[CrossRef]

Opt. Lett. (7)

M. de Labachelerie, K. Nakagawa, Y. Awaji, M. Ohtsu, �??High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines,�?? Opt. Lett. 20, 572-574 (1995)
[CrossRef]

F. -L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, K. Nakagawa, �??Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,�?? Opt. Lett. 28, 2324-2326 (2003)
[CrossRef] [PubMed]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, W. R. C. Rowley, �??Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb,�?? Opt. Lett. 29, 566-568 (2004)
[CrossRef] [PubMed]

O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kaertner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, J. Ye, �??Experimental implementation of optical clockwork without carrier-envelope phase control,�?? Opt. Lett. 29, 2806-2808 (2004)
[CrossRef] [PubMed]

M. Zimmermann, Ch. Gohle, R. Holzwarth, Th. Udem, T. Haensch, �??Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,�?? Opt. Lett. 29, 310-312 (2004)
[CrossRef] [PubMed]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M. E. Fermann, �??Frequency metrology with a turnkey all-fiber system,�?? Opt. Lett. 29, 2467-2469 (2004)
[CrossRef] [PubMed]

T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, �??Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,�?? Opt. Lett. 27, 1842-1844 (2002)
[CrossRef]

Phys. Rev. Lett. (1)

Th. Udem, J. Reichert, R. Holzwarth, T. W. Haensch, �??Absolute optical frequency measurement of the Cesium D1 line with a mode-locked laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999)
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
[CrossRef] [PubMed]

Other (1)

Ronald Holzwarth, Max Planck Inst Quantum Opt, D-85748 Garching, and Menlo Systems GmbH, D-82152 Munich, Germany (personal communication, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. Ti:s, Ti:sapphire; CM, chirped mirror; OC, output coupler; PZT, piezoelectric transducer; BS, beam splitter; MO, micro-objective lens; PCF, photonic crystal fiber; SC, supercontinuum; DM, dichroic mirror; PBS, polarization beam splitter; BP, band-pass filter; APD, avalanche photo detector; EDFA, erbium-doped fiber amplifier; PLL, phase-lock loop.

Fig. 2.
Fig. 2.

(a) Spectra of the original Ti:s comb (dashed curve), the SC comb after the PCF (dotted curve), the SFG comb (solid curve), and the acetylene-stabilized laser (straight line). (b) Beat frequency observed between the SFG and SC combs at 527 nm. The resolution bandwidth was 300 kHz.

Fig. 3.
Fig. 3.

Measured root Allan variance of A4 (solid line with filled circles). The root Allan variance of A1 and H-maser are shown as a dashed line and a solid line, respectively, for comparison.

Fig. 4.
Fig. 4.

Absolute frequency of acetylene-stabilized lasers obtained in different institutes. NPL-1 and NPL-2 are the lasers from NPL [9]. NRC is the laser from NRC [10].

Tables (4)

Tables Icon

Table 1. Selected operating parameters and characteristics of the laser systems

Tables Icon

Table 2. Absolute frequency of three different lasers locked on the P(16) line of 13C2H2.

Tables Icon

Table 3. Absolute frequency values of acetylene lines

Tables Icon

Table 4. Line spacing of the acetylene frequency atlas

Metrics