Abstract

We analyze, theoretically, a Fabry-Perot interferometer constructed from superimposed, chirped fiber Bragg gratings. Interference effects between the superimposed gratings play a large role in determining the exact positions of the FP resonances. We give formulae to determine the spatial position of the resonances of the system, and, in certain cases, the profile of their field intensity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Doucet, R. Slavik and S. LaRochelle, �??High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,�?? Electron. Lett. 38, 402-3 (2002).
    [CrossRef]
  2. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev and I. Bennion, �??Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,�?? IEEE Photon. Technol. Lett. 15, 1111-13 (2003).
    [CrossRef]
  3. G. Brochu, R. Slavik and S. LaRochelle, �??Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,�?? in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.
  4. R. Slavik, S. Doucet and S. LaRochelle, �??High-Performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,�?? J. Lightwave Technol. 21, 1059-65 (2003).
    [CrossRef]
  5. C. Sung-Hak, I Yokota and M. Obara, �??Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,�?? Jpn. J. Appl. Phys. Part 1, 36, 6383-7 (1997).
    [CrossRef]
  6. G. Town, K. Sugden, J. Williams, I. Bennion and S. B. Poole, �??Wide-Band Fabry-Perot-Like Filters in Optical Fiber,�?? IEEE Photon. Technol. Letters, 7, 78-80 (1995).
    [CrossRef]
  7. A. Melloni, M. Floridi, F. Morichetti and M. Martinelli, �??Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,�?? J. Opt. Soc. Ame. A 20, 273-81 (2003).
    [CrossRef]
  8. T. Erdogan, �??Fiber Grating Spectra,�?? Journal of Lightwave Technology, 15, 1277-94 (1997).
    [CrossRef]
  9. L. Poladian, �??Graphical and WKB analysis of nonuniform Bragg gratings,�?? Phys. Rev. E 48, 4758-67 (1993).
    [CrossRef]

Electron. Lett. (1)

S. Doucet, R. Slavik and S. LaRochelle, �??High-Finesse large band Fabry-Perot fiber filter with superimposed chirped Bragg gratings,�?? Electron. Lett. 38, 402-3 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, Igor Khrushchev and I. Bennion, �??Tunable Dispersion Compensator Based on Distributed Gires-Tournois Etalons,�?? IEEE Photon. Technol. Lett. 15, 1111-13 (2003).
[CrossRef]

IEEE Photon. Technol. Letters (1)

G. Town, K. Sugden, J. Williams, I. Bennion and S. B. Poole, �??Wide-Band Fabry-Perot-Like Filters in Optical Fiber,�?? IEEE Photon. Technol. Letters, 7, 78-80 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Ame. A (1)

A. Melloni, M. Floridi, F. Morichetti and M. Martinelli, �??Equivalent circuit of a Bragg grating and its applications to Fabry-Perot cavities,�?? J. Opt. Soc. Ame. A 20, 273-81 (2003).
[CrossRef]

Journal of Lightwave Technology (1)

T. Erdogan, �??Fiber Grating Spectra,�?? Journal of Lightwave Technology, 15, 1277-94 (1997).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

C. Sung-Hak, I Yokota and M. Obara, �??Free spectral range variation of a broadband, high-finesse, multi-channel Fabry-Perot filter using chirped fiber Bragg gratings,�?? Jpn. J. Appl. Phys. Part 1, 36, 6383-7 (1997).
[CrossRef]

OFC Conference 2004 (1)

G. Brochu, R. Slavik and S. LaRochelle, �??Ultra-Compact 52 mW 50-GHz spaced 16 channels narrow-line and single polarization fiber laser,�?? in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), postdeadline paper PDP22.

Phys. Rev. E (1)

L. Poladian, �??Graphical and WKB analysis of nonuniform Bragg gratings,�?? Phys. Rev. E 48, 4758-67 (1993).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1018 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic view of a CFBG-FP the thick grey band to the left (right) is the position-dependent reflection spectrum of the first (second) CFBG. The three wavelengths indicated by solid lines accumulate 2π worth of phase between the two reflection bands, and are thus strongly transmitted. The wavelengths indicated by dotted lines are strongly reflected.

Fig. 2.
Fig. 2.

Transmission through a single CFBG as a function of the grating strength, κ 0, using the CME (solid line) and Eq. (17) in the text (dashed line).

Fig. 3.
Fig. 3.

(a) |κ (z)| (normalized) for the parameters given in the text. (b) Transmission spectrum associated with the index profile in (a). The black dot indicates the wavelength for which the field profile of Figure 4 is calculated.

Fig. 4.
Fig. 4.

Im [keff ] (thick dotted line, normalized) for the wavelength indicated by the large dot in Fig. 3 b. Also shown is the normalized field intensity at resonance |A+(z)|2 (solid line), and the approximation given by Eq. (23) (dotted line).

Fig. 5.
Fig. 5.

Im [keff ] (dotted line) and |A+(z)|2 (both normalized) for a CFBG-FP with a spacing d=3.2mm (thick line). The accompanying movie clip shows the variation in normalized field intensity as d is varied between 1mm and 10mm. [Media 1]

Fig. 6.
Fig. 6.

Resonance wavelength as a function of γ (solid line). The dashed line shows the shift in the resonance wavelength when , and hence the FSR, is held constant. Inset is Im [keff ].

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + δ n [ 1 + cos ( 2 π Λ ( z ) d z ) ] ,
n ( z ) = n 0 + δ n [ 1 + cos ( 2 π Λ 0 z + ϕ ( z ) ) ] ,
ϕ ( z ) = π C h z 2 2 Λ 0 2 .
n ( z ) = n 0 + i = 1 2 δ n i { 1 + cos 2 π Λ ( z z i ) d z }
= n ̅ + δ n mod ( z ) ,
E ( z , t ) = A ̂ + ( z ) e i ( k 0 z ω t ) + A ̂ ( z ) e i ( k 0 z ω t ) + c . c . ,
d A ̂ + ( z ) d z = + i [ Γ A ̂ + ( z ) + κ ̂ ( z ) A ̂ ( z ) ] ,
d A ̂ ( z ) d z = i [ Γ A ̂ ( z ) + κ ̂ * ( z ) A ̂ + ( z ) ] ,
κ i = δ n i π λ
κ ̂ ( z ) = i = l 2 κ i e i [ 2 π Λ 0 z i + ϕ ( z z i ) ] ,
Γ ( ω ) = n ̅ c ( ω ω 0 ) ,
d A ± ( z ) d z = ± i [ δ ( z ; ω ) A ± ( z ) + κ ( z ) A ( z ) ] ,
δ ( z ; ω ) = Γ ( ω ) 1 2 d θ ( z ) d z .
k eff ( z ; ω ) = δ 2 ( z ; ω ) κ 2 ( z ) ,
ζ ( ω ) = k eff ( z ; ω ) d z .
k eff ( z ; ω ) = ( Γ + π C h 2 Λ 2 0 z ) 2 κ 0 2 .
t = exp ( I m [ k eff ( z ; ω ) ] d z )
= exp ( κ 0 2 C h Λ 0 2 ) .
κ ( z ) = κ 1 ( 1 + γ 2 ) + 2 γ cos ( 2 π d Λ 0 + Δ ϕ ( z ) ) ,
1 2 d θ d z = π C h 2 Λ 0 2 { z γ 2 + γ cos ( Δ ϕ ( z ) ) ( 1 + γ 2 ) + 2 γ cos ( Δ ϕ ( z ) ) } ,
Δ ϕ ( z ) = π C h d Λ 0 2 ( z d 2 )
κ ( z ) = 2 κ 0 cos ( π d Λ 0 + Δ ϕ ( z ) 2 ) ,
1 2 d θ ( z ) d z = π C h 2 Λ 0 2 { z d 2 } .
A + ( z ) A + ( z N ) exp ( z N z I m [ k eff ( z ; ω N ) ] d z ) .
z N = d 2 + ( 1 + N Λ 0 d ) 2 Λ 0 C h .
ω N = ω 0 c π n ̅ Λ 0 ( 1 + N Λ 0 d ) .

Metrics