Abstract

In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen. L. C. Kimerling, and W. Greene, �??Verticaly coupled glass microring resonator channel droping filters,�?? IEEE Photon. Technol. Lett. 11, 215-217 (1999)
    [CrossRef]
  2. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, �??Second-order filter response from parallel coupled glass microring resonators,�?? IEEE Photon. Technol. Lett. 11, 1426-1428 (1999)
    [CrossRef]
  3. B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, �??Wavelength switching and routing using absorption and resonance,�?? IEEE Photon. Technol. Lett. 11, 816-818 (1999)
  4. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan �??Directional light coupling from microdisk lasers,�?? Appl. Phys. Lett. 62, 561-563 (1993)
    [CrossRef]
  5. D. J. W. Klunder, E. Krioukov, F. S. Tan, T. Van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, �??Verticaly and laterally waveguide-coupled cylindirical microsesonators in Si3N4 on SiO2 technology,�?? Appl. Phys. B 73, 603-608 (2001)
    [CrossRef]
  6. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen. L. C. Kimerling, and W. Greene, �??Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549-551 (1998)
    [CrossRef]
  7. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, �??Ultrahigh-quality-factor silicon-on-insulator microring resonator,�?? Opt. Lett. 29, 2861-2863 (2004)
    [CrossRef]
  8. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin and F. Cerrina, �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,�?? Opt. Lett. 26, 1888-1890 (2001)
    [CrossRef]
  9. W. R. Headley, G. T.Reed, S. Howe, A. Liu, and M. Paniccia, �??Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,�?? Appl. Phys. Lett. 85, 5523-5525 (2004)
    [CrossRef]
  10. J. M. Choi, R. K. Lee, and A. Yariv �??Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscilation,�?? Opt. Lett. 26, 1236-1238 (2001)
    [CrossRef]
  11. RSoft Designing Group, Ossining, NY, USA; <a href="http://www.rsoftdesign.com">http://www.rsoftdesign.com</a>
  12. I. Kiyat, A. Aydinli and N. Dagli,�??A Compact Silicon-on-Insulator Polarization Splitter,�?? IEEE Photon. Technol. Lett. 17, 100-102 (2005)
    [CrossRef]
  13. V. Subramaniam, G. N. De Brabander, D. H. Naghski and J. T. Boyd, �??Measured of mode field profiles and bending and transition losses in curved optical channel waveguides,�?? J. Lightwave Technol. 15, 990-997 (1997)
    [CrossRef]
  14. SOITEC Silicon on Insulator Thechnologies, Bernin, France; <a href="http://www.soitec.com">http://www.soitec.com</a>

Appl. Phys. B (1)

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. Van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, �??Verticaly and laterally waveguide-coupled cylindirical microsesonators in Si3N4 on SiO2 technology,�?? Appl. Phys. B 73, 603-608 (2001)
[CrossRef]

Appl. Phys. Lett. (2)

W. R. Headley, G. T.Reed, S. Howe, A. Liu, and M. Paniccia, �??Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,�?? Appl. Phys. Lett. 85, 5523-5525 (2004)
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan �??Directional light coupling from microdisk lasers,�?? Appl. Phys. Lett. 62, 561-563 (1993)
[CrossRef]

IEEE Photon. Technol. Lett. (5)

I. Kiyat, A. Aydinli and N. Dagli,�??A Compact Silicon-on-Insulator Polarization Splitter,�?? IEEE Photon. Technol. Lett. 17, 100-102 (2005)
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen. L. C. Kimerling, and W. Greene, �??Verticaly coupled glass microring resonator channel droping filters,�?? IEEE Photon. Technol. Lett. 11, 215-217 (1999)
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, �??Second-order filter response from parallel coupled glass microring resonators,�?? IEEE Photon. Technol. Lett. 11, 1426-1428 (1999)
[CrossRef]

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, �??Wavelength switching and routing using absorption and resonance,�?? IEEE Photon. Technol. Lett. 11, 816-818 (1999)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen. L. C. Kimerling, and W. Greene, �??Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549-551 (1998)
[CrossRef]

J. Lightwave Technol. (1)

V. Subramaniam, G. N. De Brabander, D. H. Naghski and J. T. Boyd, �??Measured of mode field profiles and bending and transition losses in curved optical channel waveguides,�?? J. Lightwave Technol. 15, 990-997 (1997)
[CrossRef]

Opt. Lett. (3)

Other (2)

RSoft Designing Group, Ossining, NY, USA; <a href="http://www.rsoftdesign.com">http://www.rsoftdesign.com</a>

SOITEC Silicon on Insulator Thechnologies, Bernin, France; <a href="http://www.soitec.com">http://www.soitec.com</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Cross sectional schematic view of the designed rib waveguide and the coupling region. The dimensions used in fabrication are H=1.00 µm, w=1.0 µm, h=0.58 µm and g=0.8 µm (b) Optical micrographs of one of the fabricated resonators and its coupling region.

Fig. 2.
Fig. 2.

(a) The effective index method is used to reduce 3D structure to 2D. (b) Analytically and numerically (3D BPM) simulated bending loss extrapolated to 90° as a function of bending radius. Expected Q values for the design are shown on the second y-axis. Inset shows the layout used in BPM simulations.

Fig. 3.
Fig. 3.

Numerically (3D BPM) calculated coupling factors as a function of straight coupling length for different radii. Inset shows the layout used in BPM simulations

Fig. 4.
Fig. 4.

Measured transmission spectra of the fabricated silicon-on-insulator rib waveguide racetrack resonators for radii of 500, 350, 250 and 150 µm for the same span of wavelengths.

Tables (1)

Tables Icon

Table 1. Summary of characteristics of fabricated and measured resonators

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I t = ( 1 κ ) 1 2 exp ( ( α T 2 + i ϕ ) ) 1 ( 1 κ ) 1 2 exp ( ( α T 2 + i ϕ ) ) 2
κ = 1 exp ( α T )
Loss bend = 10 log ( exp ( α bend Δ θ R ) )
α bend = α y 2 k 0 3 n e ( 1 + α y w 2 ) k y 2 ( n e 2 2 n e l 2 ) exp ( α y w ) exp ( 2 α y 3 3 n e 2 k 0 2 R )

Metrics