Abstract

The performance of all-optical XOR gate based on quantum-dot (QD) SOA MZI has been simulated. The saturation power, optical gain and phase response of a QD SOA has been analyzed numerically using a rate equation model of quantum dots embedded in a wetting layer. The calculated response is used to model the XOR performance. For the parameters used here, XOR operation at ~250 Gb/s is feasible using QD based Mach-Zehnder interferometers. The speed is limited by the relaxation time from wetting layer to the quantum dots.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. L. Hall and K. A. Rauschenbach, �??All-optical bit pattern generation and matching,�?? Electron. Lett. 32, 1214-1215 (1996).
    [CrossRef]
  2. A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, �??All-optical pseudorandom number generator,�?? Opt. Commun. 159, 208-214 (1999).
    [CrossRef]
  3. T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, �??Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,�?? IEEE Photon. Technol. Lett. 13, 750-752 (2001).
    [CrossRef]
  4. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, �??Interferometric all-optical switches for ultrafast signal processing,�?? Appl. Opt. 37, 2831-2842 (1998).
    [CrossRef]
  5. M. Jinno, and T. Matsumoto, �??Ultrafast all-optical logic operations in a nonlinear sagnac interferometer with two control beams,�?? Opt. Lett. 16, 220-222 (1991).
    [CrossRef] [PubMed]
  6. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard and R. Dall�??Ara, �??10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,�?? Electron. Lett. 35, 1650-1652 (1999).
    [CrossRef]
  7. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall�??Ara, �??20 Gb/s all-optical XOR with UNI gate,�?? IEEE Photon. Technol. Lett. 12, 834-836 (2000).
    [CrossRef]
  8. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, �??Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,�?? Electron. Lett. 36 (22), 1863-1864 (2000).
    [CrossRef]
  9. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, �??Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,�?? IEEE J. Quantum Electron., Vol.40, pp.703-710,2004.
    [CrossRef]
  10. G. Agrawal and N. Olsson, �??Self-Phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 25-11, 2297-2306 (1989).
    [CrossRef]
  11. H.Chen, G.Zhu, J.Jaques, J.Leuthold, A.B.Piccirilli, and N.K.Dutta, �??All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,�?? Electron. Lett. 38, 1271-1273 (2002).
    [CrossRef]
  12. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, �??Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,�?? Phys. Rev. B 69, 235332-1-39 (2004).
    [CrossRef]
  13. J. Mark and J. Mørk, �??Subpicosecond gain dynamics in InGaAsP optical amplifiers; Experiment and theory,�?? Appl. Phys. Lett. 61, 2281-2283 (1992).
    [CrossRef]
  14. A. Mecozzi and J. Mørk, �??Saturation effect in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifier,�?? IEEE J. Sel. Top. Quantum Electron. 3-5, 1190-1207 (1997).
  15. J. M. Tang and K. A. Shore,"Characteristic of Optical Phase Conjugation of Picosecond Pulses in Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 35-7, 1032-1040 (1999).
    [CrossRef]
  16. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, �??Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160Gbs-1 and a new scheme of 3R regenerators,�?? Meas. Sci. Technol. 13, 1683-1691 (2002).
    [CrossRef]
  17. A. Sakamoto and M. Sugawara �??Theoretical calculation of lasing spectra of quantum-dot lasers: Effect of homogeneous broadening of optical gain,�?? IEEE Photon. Technol. Lett. 12-2, (2000).
  18. R. Gutierrez-Castrejon, L. Occhi, L. Schares, and G. Guekos, �??Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing,�?? Opt. Commun. 195, 167-177 (2001).
    [CrossRef]
  19. G. P. Agrawal, Fiber Optic Communication systems, (John Wiley, 1997) Section 4.5.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Mark and J. Mørk, �??Subpicosecond gain dynamics in InGaAsP optical amplifiers; Experiment and theory,�?? Appl. Phys. Lett. 61, 2281-2283 (1992).
[CrossRef]

Electron. Lett. (4)

H.Chen, G.Zhu, J.Jaques, J.Leuthold, A.B.Piccirilli, and N.K.Dutta, �??All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,�?? Electron. Lett. 38, 1271-1273 (2002).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard and R. Dall�??Ara, �??10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,�?? Electron. Lett. 35, 1650-1652 (1999).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, �??Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,�?? Electron. Lett. 36 (22), 1863-1864 (2000).
[CrossRef]

K. L. Hall and K. A. Rauschenbach, �??All-optical bit pattern generation and matching,�?? Electron. Lett. 32, 1214-1215 (1996).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. M. Tang and K. A. Shore,"Characteristic of Optical Phase Conjugation of Picosecond Pulses in Semiconductor Optical Amplifiers," IEEE J. Quantum Electron. 35-7, 1032-1040 (1999).
[CrossRef]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, �??Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,�?? IEEE J. Quantum Electron., Vol.40, pp.703-710,2004.
[CrossRef]

G. Agrawal and N. Olsson, �??Self-Phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,�?? IEEE J. Quantum Electron. 25-11, 2297-2306 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mecozzi and J. Mørk, �??Saturation effect in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifier,�?? IEEE J. Sel. Top. Quantum Electron. 3-5, 1190-1207 (1997).

IEEE Photon. Technol. Lett. (3)

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall�??Ara, �??20 Gb/s all-optical XOR with UNI gate,�?? IEEE Photon. Technol. Lett. 12, 834-836 (2000).
[CrossRef]

A. Sakamoto and M. Sugawara �??Theoretical calculation of lasing spectra of quantum-dot lasers: Effect of homogeneous broadening of optical gain,�?? IEEE Photon. Technol. Lett. 12-2, (2000).

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, �??Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,�?? IEEE Photon. Technol. Lett. 13, 750-752 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and H. Ishikawa, �??Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160Gbs-1 and a new scheme of 3R regenerators,�?? Meas. Sci. Technol. 13, 1683-1691 (2002).
[CrossRef]

Opt. Commun. (2)

R. Gutierrez-Castrejon, L. Occhi, L. Schares, and G. Guekos, �??Recovery dynamics of cross-modulated beam phase in semiconductor amplifiers and applications to all-optical signal processing,�?? Opt. Commun. 195, 167-177 (2001).
[CrossRef]

A. J. Poustie, K. J. Blow, R. J. Manning, and A. E. Kelly, �??All-optical pseudorandom number generator,�?? Opt. Commun. 159, 208-214 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, �??Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,�?? Phys. Rev. B 69, 235332-1-39 (2004).
[CrossRef]

Other (1)

G. P. Agrawal, Fiber Optic Communication systems, (John Wiley, 1997) Section 4.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of a XOR operation using Mach-Zehnder modulator (b) Truth table of XOR operation

Fig. 2.
Fig. 2.

carrier injection model in the conduction band of a Quantum dot

Fig. 3.
Fig. 3.

Calculated optical gain as a function of output optical power for various injected current densities. The gain decreases at a higher power at higher current density.

Fig. 4.
Fig. 4.

Calculated gain and phase change following a 1.5 ps wide, 1.8 pJ pulse for two different current densities.

Fig. 5.
Fig. 5.

Input pulses (top two traces) and XOR output (bottom trace) at 160Gb/s

Fig. 6.
Fig. 6.

Pseudo eye diagrams at (a) 80Gb/s signal Q=12.79 (b) 160Gb/s Q=5.77 (c) 250Gb/s Q=2.02 (d) 80Gb/s signal Q=19.72 (e) 160Gb/s Q=7.87 (f) 250Gb/s Q=5.92 The entire axis is 1 bit period i.e. in each case the pulse width is the same fraction (20 %) of the bit period.

Fig. 7.
Fig. 7.

The calculated Q is plotted as a function of injected current density. (a) τw→d =6ps (b) τw→d =1ps

Fig. 8.
Fig. 8.

The calculated Q as a function of the ratio of the pulse width to bit period (τw→d =1ps, Injection=2 kA/cm2)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d N w d t = J e d N w τ w d ( 1 N i d N i max ) N w τ w r + i N i d τ d w
d N i d d t = N w τ w d ( 1 N i d N i max ) N i d τ d r i N i d τ d w Γ g S
g SHB t = g SHB τ SHB ε SHB τ SHB g total S ( t , z ) ( g CH t + g l t )
g CH t = g CH τ CH ε CH τ CH g total S ( t , z )
g total = g l + g SHB + g CH
S ( t , z ) z = Γ g S ( t , z )
S ( t , z ) = S ( t , 0 ) G ( t , z )
0 z Γ g S ( t , z ) d z = S ( t , z ) S ( t , 0 ) = [ G ( t , z ) 1 ] S ( t , 0 )
d h d d t = h w τ w d ( 1 h d h max ) h d τ d r [ Exp ( h d + h SHB + h CH ) 1 ] S ( t , 0 )
d h w d t = ( h in h w ) τ w r h w τ w d ( 1 h d h max )
d h SHB d t = h SHB τ SHB ε SHB τ SHB [ Exp ( h d + h SHB + h CH ) 1 ] S ( t , 0 ) d h d d t d h CH d t
d h CH d t = h CH τ CH ε CH τ CH [ Exp ( h d + h SHB + h CH ) 1 ] S ( t , 0 )
ϕ ( t ) = 1 2 [ α h d ( t ) + α CH h CH ( t ) ]
P X OR ( t ) = P in 4 { G 1 ( t ) + G 2 ( t ) 2 G 1 ( t ) G 2 ( t ) cos [ ϕ 1 ( t ) ϕ 2 ( t ) ] }
ϕ 1 ( t ) ϕ 2 ( t ) = α 2 ln ( G 1 Linear ( t ) G 2 Linear ( t ) ) α CH 2 ln ( G 1 CH ( t ) G 2 CH ( t ) )
Q = P 1 ¯ P 0 ¯ σ 1 + σ 2

Metrics