Abstract

A scheme for the resolution-enhancement of a three-dimension/two-dimension convertible display based on integral imaging is proposed. The proposed method uses an additional lens array, located between the conventional lens array and a collimating lens. Using the additional lens array, the number of the point light sources is increased far beyond the number of the elemental lenses constituting the lens array, and, consequently, the resolution of the generated 3D image is enhanced. The principle of the proposed method is described and verified experimentally.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor

Ju-Seog Jang and Bahram Javidi
Appl. Opt. 42(11) 1996-2002 (2003)

Depth-enhanced three-dimensional–two-dimensional convertible display based on modified integral imaging

Jae-Hyeung Park, Hak-Rin Kim, Yunhee Kim, Joohwan Kim, Jisoo Hong, Sin-Doo Lee, and Byoungho Lee
Opt. Lett. 29(23) 2734-2736 (2004)

Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging

Seong-Woo Cho, Jae-Hyeung Park, Yunhee Kim, Heejin Choi, Joohwan Kim, and Byoungho Lee
Opt. Lett. 31(19) 2852-2854 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [Crossref] [PubMed]
  3. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
    [Crossref]
  4. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8, 255–262 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.
    [Crossref] [PubMed]
  5. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020–6032 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6020.
    [Crossref] [PubMed]
  6. S.-H. Shin and B. Javidi, “Speckle reduced three-dimensional volume holographic display using integral imaging,” Appl. Opt. 41, 2644–2649 (2002).
    [Crossref] [PubMed]
  7. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-483.
    [Crossref] [PubMed]
  8. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40, 5592–5599 (2001).
    [Crossref]
  9. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1067
    [Crossref] [PubMed]
  10. B. Lee, S. Jung, and J. -H. Park, “Viewing-angle-enhanced integral imaging using lens switching,” Opt. Lett. 27, 818–820 (2002).
    [Crossref]
  11. J. S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high resolution three-dimensional display,” Opt. Express 12, 557–563 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-557
    [Crossref] [PubMed]
  12. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
    [Crossref] [PubMed]
  13. J. S. Jang and B. Javidi, “Three dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
    [Crossref]
  14. J. S. Jang and B. Javidi, “Improved viewing resolution of 3-D integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [Crossref]
  15. J. Hong, J.-H. Park, S. Jung, and B. Lee, “A depth-enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
    [Crossref] [PubMed]
  16. J. S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003).
    [Crossref] [PubMed]
  17. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
    [Crossref] [PubMed]

2005 (1)

2004 (6)

2003 (1)

2002 (4)

2001 (3)

L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40, 5592–5599 (2001).
[Crossref]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8, 255–262 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-4-255.
[Crossref] [PubMed]

1997 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

Aggoun, A.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Arai, J.

Choi, H.

Davies, N.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Dohi, T.

Erdmann, L.

Gabriel, K. J.

Harashima, H.

Hata, N.

Hong, J.

Hong, S.-H.

Hoshino, H.

Iwahara, M.

Jang, J. S.

Jang, J.-S.

Javidi, B.

Jung, S.

Kim, H.-R.

Kim, J.

Kim, Y.

Kung, S. Y.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Lee, B.

Lee, S.-D.

Liao, H.

Lippmann, G.

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

Manolache, S.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

McCormick, M.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Min, S.-W.

Naemura, T.

Oh, Y.-S.

Okano, F.

Park, J. -H.

Park, J.-H.

Shin, S.-H.

Yoshida, T.

Yuyama, I.

Appl. Opt. (4)

Comptes-Rendus Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” Comptes-Rendus Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. A. (1)

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of 3D/2D convertible integral imaging (a) 2D mode (b) 3D mode

Fig. 2.
Fig. 2.

Limitations in resolution of the 3D/2D convertible integral imaging

Fig. 3.
Fig. 3.

Schematic diagram of the proposed method

Fig. 4.
Fig. 4.

Geometry of the generation of a point light source array using two lens arrays

Fig. 5.
Fig. 5.

Example of the generation of a uniformly dense point light source array

Fig. 6.
Fig. 6.

Schematic diagram of the experimental setup (a) previous method (b) proposed method

Fig. 7.
Fig. 7.

Part of generated point light source (a) previous method (b) proposed method

Fig. 8.
Fig. 8.

3D image observed from different directions (a) previous method (b) proposed method

Fig. 9.
Fig. 9.

Displayed flat images in the 3D mode (a) original images (b) previous method (c) proposed method

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ 1 = 2 tan 1 ( φ 1 2 f 1 ) .
k φ 1 l tan ( ψ 1 2 ) < q φ 2 < k φ 1 + l tan ( ψ 1 2 ) ,
k l φ 1 + l tan ( ψ 1 2 ) = q φ 2 = k h φ 1 l tan ( ψ 1 2 ) .
k l = q φ 2 φ 1 l 2 f 1 ,
k h = q φ 2 φ 1 + l 2 f 1 .
y 2 , k , q = q φ 2 ( 1 + g l ) k φ 1 g l , ( k l k k h )
g = l f 2 l f 2 .
ψ 2 = 2 tan 1 ( φ 2 2 g ) .

Metrics