Abstract

We examine the effects of dispersion and absorption in ultrahigh-resolution optical coherence tomography (OCT), particularly the necessity to compensate for high dispersion orders in order to narrow the axial point-spread function envelope. We present a numerical expansion in which the impact of the various dispersion orders is quantified; absorption effects are evaluated numerically. Assuming a Gaussian source spectrum (in the optical frequency domain), we focus on imaging through water as a first approximation to biological materials. Both dispersion and absorption are found to be most significant for wavelengths above ~1µm, so that optimizing the system effective resolution (ER) requires choosing an operating wavelength below this limit. As an example, for 1-µm source resolution (FWHM), and propagation through a 1-mm water cell, if up to third-order dispersion compensation is applied, then the optimal center wavelength is 0.8µm, which generates an ER of 1.5µm (in air). The incorporation of additional bandwidth yields no ER improvement, due to uncompensated high-order dispersion and long-wavelength absorption.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221�??1223 (1999).
    [CrossRef]
  3. W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47�??74 (2004).
    [CrossRef] [PubMed]
  4. D. D. Sampson, �??Trends and prospects for optical coherence tomography,�?? in 2nd EuropeanWorkshop on Optical Fiber Sensors, J. M. López-Higuera and B. Culshaw, eds., Proc. of SPIE 5502, (SPIE, Bellingham, WA, 2004), pp. 51-58.
  5. C.K. Hitzenberger, A. Baumgartner, and A. F. Fercher, �??Dispersion induced multiple signal peak splitting in partial coherence interferometry,�?? Opt. Commun. 154, 179�??185 (1998).
    [CrossRef]
  6. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144�??150 (1999).
    [CrossRef]
  7. M.Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404�??2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.</a>
    [CrossRef] [PubMed]
  8. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, �??Real-time dispersion compensation in scanning interferometry,�?? Opt. Lett. 27, 1998�??2000 (2002).
    [CrossRef]
  9. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, �??Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,�?? J. Opt. Soc. Am. A 20, 333�??341 (2003).
    [CrossRef]
  10. W. K. Niblack, J. O. Schenk, B. Liu, and M. E. Brezinski, �??Dispersion in a grating-based optical delay line for optical coherence tomography,�?? Appl. Opt. 42, 4115�??4118 (2003).
    [CrossRef] [PubMed]
  11. Y. Chen and X. Li, �??Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,�?? Opt. Express 12, 5968�??5978 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5968.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5968.</a>
    [CrossRef] [PubMed]
  12. J. F. de Boer, C. E. Saxer, and J. S. Nelson �??Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,�?? Appl. Opt. 40, 5787�??5790 (2001).
    [CrossRef]
  13. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, �??Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,�?? Appl. Opt. 42, 204�??216 (2003).
    [CrossRef] [PubMed]
  14. B. Liu, E. A. Macdonald, D. L. Stamper, and M. E. Brezinski, �??Group velocity dispersion effects with water and lipid in 1.3 µm optical coherence tomography system,�?? Phys. Med. Biol. 49, 923-930 (2004).
    [CrossRef] [PubMed]
  15. D. D. Sampson and T. R. Hillman, �??Optical coherence tomography,�?? in Lasers And Current Optical Techniques In Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004), pp. 481�??571.
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, 1991).
    [CrossRef]
  17. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, �??Optimal wavelength for ultrahigh-resolution optical coherence tomography,�?? Opt. Express 11, 1411�??1417 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411.</a>
    [CrossRef] [PubMed]
  18. A. F. Fercher and C. K. Hitzenberger, �??Optical coherence tomography,�?? in Progress in Optics, E. Wolf, ed. (Elsevier Science B. V., Amsterdam, 2002), pp. 215�??302.
  19. D. Marcuse, �??Pulse distortion in single-mode fibers,�?? Appl. Opt. 19, 1653�??1660 (1980).
    [CrossRef] [PubMed]
  20. D. J. Segelstein, �??The complex refractive index of water,�?? (University of Missouri-Kansas City, 1981), as reported at <a href= "http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind."> http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind.</a>
  21. A. G. Van Engen, S. A. Diddams, and T. S. Clement, �??Dispersion measurements of water with white-light interferometry,�?? Appl. Opt. 37, 5679�??5686 (1998).
    [CrossRef]
  22. A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, �??Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,�?? J. Phys. Chem. Ref. Data 27, 761�??774 (1998). The formulation is available as IAPWS 5C: �??Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure,�?? (International Association for the Properties of Water and Steam (IAPWS), 1997), <a href= "http://www.iapws.org/relguide/rindex.pdf."> http://www.iapws.org/relguide/rindex.pdf.</a>
    [CrossRef]
  23. I.-J. Hsu, C.-W. Sun, C.-W. Lu, C. C. Yang, C.-P. Chiang, and C.-W. Lin, �??Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,�?? Appl. Opt. 42, 227�??234 (2003).
    [CrossRef] [PubMed]
  24. J. G. Fujimoto, �??Optical coherence tomography: Introduction,�?? in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, Inc., New York, 2002), pp. 1�??40.
  25. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, �??Optical coherence tomographic imaging of human tissue at 1.55µm and 1.81µm using Er- and Tm-doped fiber sources,�?? J. Biomed. Opt. 3, 76�??79 (1998).
    [CrossRef]
  26. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, �??Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,�?? Opt. Express 11, 1980�??1986 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980</a>
    [CrossRef] [PubMed]
  27. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, �??Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,�?? Opt. Express 9, 610�??615 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610. </a>

Appl. Opt. (6)

Handbook of Optical Coherence Tomography (1)

J. G. Fujimoto, �??Optical coherence tomography: Introduction,�?? in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, Inc., New York, 2002), pp. 1�??40.

J. Biomed. Opt. (3)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, �??Optical coherence tomographic imaging of human tissue at 1.55µm and 1.81µm using Er- and Tm-doped fiber sources,�?? J. Biomed. Opt. 3, 76�??79 (1998).
[CrossRef]

W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47�??74 (2004).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144�??150 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, �??Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,�?? J. Phys. Chem. Ref. Data 27, 761�??774 (1998). The formulation is available as IAPWS 5C: �??Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure,�?? (International Association for the Properties of Water and Steam (IAPWS), 1997), <a href= "http://www.iapws.org/relguide/rindex.pdf."> http://www.iapws.org/relguide/rindex.pdf.</a>
[CrossRef]

Lasers And Current Optical Techniques In (1)

D. D. Sampson and T. R. Hillman, �??Optical coherence tomography,�?? in Lasers And Current Optical Techniques In Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004), pp. 481�??571.

Opt. Commun. (1)

C.K. Hitzenberger, A. Baumgartner, and A. F. Fercher, �??Dispersion induced multiple signal peak splitting in partial coherence interferometry,�?? Opt. Commun. 154, 179�??185 (1998).
[CrossRef]

Opt. Express (5)

M.Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404�??2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.</a>
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, �??Optimal wavelength for ultrahigh-resolution optical coherence tomography,�?? Opt. Express 11, 1411�??1417 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411.</a>
[CrossRef] [PubMed]

Y. Chen and X. Li, �??Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator,�?? Opt. Express 12, 5968�??5978 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5968.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5968.</a>
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, �??Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,�?? Opt. Express 11, 1980�??1986 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980</a>
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, �??Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,�?? Opt. Express 9, 610�??615 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-12-610. </a>

Opt. Lett. (2)

Phys. Med. Biol. (1)

B. Liu, E. A. Macdonald, D. L. Stamper, and M. E. Brezinski, �??Group velocity dispersion effects with water and lipid in 1.3 µm optical coherence tomography system,�?? Phys. Med. Biol. 49, 923-930 (2004).
[CrossRef] [PubMed]

Proc. of SPIE (1)

D. D. Sampson, �??Trends and prospects for optical coherence tomography,�?? in 2nd EuropeanWorkshop on Optical Fiber Sensors, J. M. López-Higuera and B. Culshaw, eds., Proc. of SPIE 5502, (SPIE, Bellingham, WA, 2004), pp. 51-58.

Progress in Optics 2002 (1)

A. F. Fercher and C. K. Hitzenberger, �??Optical coherence tomography,�?? in Progress in Optics, E. Wolf, ed. (Elsevier Science B. V., Amsterdam, 2002), pp. 215�??302.

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
[CrossRef] [PubMed]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, 1991).
[CrossRef]

D. J. Segelstein, �??The complex refractive index of water,�?? (University of Missouri-Kansas City, 1981), as reported at <a href= "http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind."> http://atol.ucsd.edu/%7Epflatau/refrtab/water/Segelstein.H2Orefind.</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Time-domain OCT schematic, showing transfer function representations of the sample and reference arms.

Fig. 2.
Fig. 2.

Absorption (blue curve) and refractive index (black curve) spectrum of water, due to Segelstein [21]. The red curve shows the refractive index spectrum due to the formulation of Harvey et al. [23], extrapolated beyond the specified wavelength range of 0.2–2.5 µm (asymptote shown as dotted line).

Fig. 3.
Fig. 3.

Envelope broadening factor (EBF) plotted as a function of source center wavelength, for z=1mm, taking absorption into account (top row), and ignoring it (bottom row), for given source resolutions (SRs).

Fig. 4.
Fig. 4.

Comparison between the different broadening factor definitions, for source resolutions of 1µm and 3µm. EBFNS: Unsquared RMS; EBFV: Visibility; EBFFWHM: FWHM.

Fig. 5.
Fig. 5.

Plots of interferograms due to the effects of dispersion and absorption. The source resolution is 1µm. Top row: Red curve represents undistorted source power spectral density; black curve represents absorption-distorted power spectral density. Centre row: Normalized interferogram envelopes (legend given in right panel). Bottom row: As center row, but absorption neglected. Center wavelengths are labelled by column; propagation distance z=1mm in each instance.

Fig. 6.
Fig. 6.

Plots of envelope broadening factor (EBF) vs. single-pass propagation distance z, presented in rows according to source resolution (SR), and columns according to center wavelength. The legend corresponding to the four different dispersion-compensation approaches is given in the bottom-center panel.

Fig. 7.
Fig. 7.

Plots of effective resolution (ER) vs. center wavelength. The dispersion-compensation conditions for each plot are given, and the propagation distance z=1mm. Multiple curves reflect different source resolutions (SRs), with the legend in the lower-left panel applicable to all plots.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ˜ = 2 [ H S ( ν ) H R * ( ν ) G 0 ( ν ) d ( ν ν ̅ ) ] ,
I ˜ = 2 [ G 0 ( ν ) exp { 2 z [ 1 2 α ( ν ) + j β ( ν ) ] d ( ν ν ̅ ) } ] ,
2 β ( ν ) z = k = 0 β k ( ν ν ̅ ) k ,
β 2 = 2 π z ν ̅ 2 G D = 2 π z c ν ̅ 2 D λ = 2 π z D ν = 2 π 2 D ω .
I ˜ c = exp ( j 2 π ν ̅ τ p ) 𝓕 { g ( u ) } ,
G ( τ g ) = 𝓕 { g ( u ) } = g ( u ) exp { j 2 π u τ g } d u .
σ τ g = τ g 2 E ( τ g ) d τ g E ( τ g ) d τ g [ τ g E ( τ g ) d τ g E ( τ g ) d τ g ] 2 ,
σ τ g = K 2 + β 2 2 2 π 2 K = σ 0 1 + ( β 2 K ) 2 ,
[ E ( τ g ) ] 2 = 𝓕 { g ( u ) } 2 = 𝓕 { g ( w ) g * ( w u ) d w } .
σ τ g = 1 2 π [ N ( 0 ) N ( 0 ) ] 2 N ( 0 ) N ( 0 ) ,
σ τ g = σ τ g , ND 1 + t = 2 s = t C s , t β s β t ,
C s , t = { 8 ( 2 δ s , t ) s t ( 8 K ) ( s + t ) 2 ( s + t 2 ) ! ( s + t 2 2 ) ! , if s , t even ; 8 ( 2 δ s , t ) s t ( 8 k ) ( s + t ) 2 [ ( s + t 2 ) ! ( s + t 2 2 ) ! ( s 1 ) ! ( t 1 ) ! ( s 1 2 ) ! ( t 1 2 ) ! ] if s , t odd ; 0 , otherwise,

Metrics