Abstract

We address the propagation of solitons in reconfigurable two-dimensional networks induced optically by arrays of nondiffracting Bessel beams in Kerr-type nonlinear media. We show that broad soliton beams can move across networks with different topologies almost without radiation losses, opening new prospects for all-optical soliton manipulation. We also discuss various switching scenarios for solitons launched into the multi-core directional couplers optically-induced by suitable arrays of Bessel beams.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. N. Christodoulides and R. I. Joseph, �??Discrete self-focusing in nonlinear arrays of coupled waveguides,�?? Opt. Lett. 13, 794 (1988).
    [CrossRef] [PubMed]
  2. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, �??Discrete spatial optical Solitons in waveguide arrays,�?? Phys. Rev. Lett. 81, 3383 (1998).
    [CrossRef]
  3. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, �??Dynamics of discrete solitons in optical waveguide arrays,�?? Phys. Rev. Lett. 83, 2726 (1999).
    [CrossRef]
  4. D. N. Christodoulides, F. Lederer, and Y. Silberberg, �??Discretizing light behavior in linear and nonlinear waveguide lattices,�?? Nature 424, 817 (2003)
    [CrossRef] [PubMed]
  5. D. N. Christodoulides and E. D. Eugenieva, �??Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguides arrays,�?? Phys. Rev. Lett. 87, 233901 (2001).
    [CrossRef] [PubMed]
  6. E. D. Eugenieva, N. K. Efremidis, and D. N. Christodoulides, �??Design of switching junctions for two-dimensional discrete soliton networks,�?? Opt. Lett. 26, 1978 (2001).
    [CrossRef]
  7. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, �??Discrete solitons in photorefractive optically induced photonic lattices,�?? Phys. Rev. E 66, 046602 (2002).
    [CrossRef]
  8. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, �??Observation of discrete solitons in optically induced real time waveguide arrays,�?? Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef] [PubMed]
  9. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, �??Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,�?? Nature 422, 147 (2003).
    [CrossRef] [PubMed]
  10. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, �??Spatial solitons in optically induced gratings,�?? Opt. Lett. 28, 710 (2003).
    [CrossRef] [PubMed]
  11. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, �??Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,�?? Phys. Rev. Lett. 92, 123902 (2004).
    [CrossRef] [PubMed]
  12. Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, �??Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,�?? Phys. Rev. Lett. 92, 143902 (2004).
    [CrossRef] [PubMed]
  13. J. Yang and Z. H. Musslimani, �??Fundamental and vortex solitons in a two-dimensional optical lattice,�?? Opt. Lett. 28, 2094 (2003).
    [CrossRef] [PubMed]
  14. Y. V. Kartashov, A. S. Zelenina, L. Torner, and V. A. Vysloukh, �??Spatial soliton switching in quasi-continuous optical arrays,�?? Opt. Lett. 29, 766 (2004).
    [CrossRef] [PubMed]
  15. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, �??Parametric amplification of soliton steering in optical lattices,�?? Opt. Lett. 29, 1102 (2004).
    [CrossRef] [PubMed]
  16. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, �??Soliton trains in photonic lattices,�?? Opt. Express. 12, 2831 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2831">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2831</a>.
    [CrossRef] [PubMed]
  17. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, �??Rotary solitons in Bessel optical lattices,�?? Phys. Rev. Lett. 93, 093904 (2004).
    [CrossRef] [PubMed]
  18. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, �??Rotary dipole-mode solitons in Bessel optical lattices,�?? J. Opt. B: Quantum Semi. Opt. 6, 444 (2004).
    [CrossRef]
  19. J. Durnin, J. Miceli, and J. H. Eberly, �??Diffraction-free beams,�?? Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  20. V. Kettunen and J. Turunen, �??Propagation-invariant spot arrays,�?? Opt. Lett. 23, 1247 (1998).
    [CrossRef]
  21. S. H. Tao, X-C Yuan, and B. S. Ahluwalia, �??The generation of an array of nondiffracting beams by a single composite computer generated hologram,�?? J. Opt. A: Pure Appl. Opt. 7, 40 (2005).
    [CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. H. Tao, X-C Yuan, and B. S. Ahluwalia, �??The generation of an array of nondiffracting beams by a single composite computer generated hologram,�?? J. Opt. A: Pure Appl. Opt. 7, 40 (2005).
[CrossRef]

J. Opt. B: Quantum Semi. Opt. (1)

Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, �??Rotary dipole-mode solitons in Bessel optical lattices,�?? J. Opt. B: Quantum Semi. Opt. 6, 444 (2004).
[CrossRef]

Nature (2)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, �??Discretizing light behavior in linear and nonlinear waveguide lattices,�?? Nature 424, 817 (2003)
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, �??Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,�?? Nature 422, 147 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. E (1)

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, �??Discrete solitons in photorefractive optically induced photonic lattices,�?? Phys. Rev. E 66, 046602 (2002).
[CrossRef]

Phys. Rev. Lett. (8)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, �??Observation of discrete solitons in optically induced real time waveguide arrays,�?? Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, �??Rotary solitons in Bessel optical lattices,�?? Phys. Rev. Lett. 93, 093904 (2004).
[CrossRef] [PubMed]

J. Durnin, J. Miceli, and J. H. Eberly, �??Diffraction-free beams,�?? Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, �??Discrete spatial optical Solitons in waveguide arrays,�?? Phys. Rev. Lett. 81, 3383 (1998).
[CrossRef]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, �??Dynamics of discrete solitons in optical waveguide arrays,�?? Phys. Rev. Lett. 83, 2726 (1999).
[CrossRef]

D. N. Christodoulides and E. D. Eugenieva, �??Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguides arrays,�?? Phys. Rev. Lett. 87, 233901 (2001).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, �??Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,�?? Phys. Rev. Lett. 92, 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and A. Bezryadina, �??Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains,�?? Phys. Rev. Lett. 92, 143902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Linear network created with array of Bessel beams. Profiles of solitons with power U=0.8 (b) and U=1.34 (c) supported by network shown in (a). (d) Drift of soliton with power U=0.8 and incident angle α=1 in uniform network and its deflection on the network defect. Intensity distributions showing drift and deflection are superimposed and taken at ζ=0. In all cases modulation depth p=15 and separation between Bessel waveguides η 0=1.

Fig. 2.
Fig. 2.

Soliton propagation across 60°-bend (a), 90°-bend (b), and circular (c) networks created with arrays of Bessel beams. White contour lines are to help the eye and show positions of the induced guiding channels. Labels S in, S out stand for input and output soliton positions. Input power U=0.8, incident angle α=1, modulation depth p=15, and separation between Bessel waveguides η 0=1.

Fig. 3.
Fig. 3.

Switching scenarios in the matrix of four Bessel waveguides when two solitons are launched into neighboring optically-induced guides. Top: input (left) and output (right) intensity distributions for in-phase solitons. Bottom: input (left) and output (right) intensity distributions for out-of-phase solitons. Input power U=2.14, modulation depth p=5, and separation between Bessel beams η 0=2.5.

Fig. 4.
Fig. 4.

Switching scenarios in the multicore coupler optically-induced by four Bessel beams when two solitons are launched into opposite waveguides. Top: input (left) and output (right) intensity distributions for in-phase solitons. Bottom: input (left) and output (right) intensity distributions for out-of-phase solitons. Input power U=2.14, modulation depth p=5, and separation between beams η=2.5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i q ξ = 1 2 ( 2 q η 2 + 2 q η 2 ) q q 2 p R ( η , ζ ) q ,
R ( η , ζ ) = k = 1 N J 0 2 { ( 2 b lin ) 1 2 [ ( η η k ) 2 + ( ζ ζ k ) 2 ] 1 2 } ,
U = q 2 d η d ζ .

Metrics