Abstract

A simple, stable, and tunable optical pulse source emitting 3.2 ps pulses at a 10 GHz repetition rate is presented. The pulses are obtained through soliton-assisted time-lens compression in a standard single mode fiber, and are fully characterized by wavelength-conversion frequency-resolved optical gating. The use of nonlinear effects relaxes the constraint of the high driving voltage on the phase modulator usually required in this type of source.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.
  2. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
    [CrossRef]
  3. A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
    [CrossRef]
  4. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29, 1470–1472 (2004).
    [CrossRef] [PubMed]
  5. M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).
  6. P.-A. Lacourt, J. M. Dudley, J.-M. Merolla, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes, “Milliwatt peak power pulse characterization at 1.55 microns via wavelength conversion frequency resolved optical gating,” Opt. Lett. 27, 863–865 (2002).
    [CrossRef]
  7. J. D. Moores, “Nonlinear compression of chirped solitary waves with and without phase modulation,” Opt. Lett. 21, 555–557 (1996).
    [CrossRef] [PubMed]
  8. T. E. Murphy, “10-GHz 1.3 ps pulse generation using chirped soliton compression in a Raman gain medium,” IEEE Photon. Technol. Lett. 14, 1424–1426 (2002).
    [CrossRef]
  9. N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1994).
    [CrossRef]

2004 (1)

2002 (2)

1996 (1)

1994 (2)

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1994).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
[CrossRef]

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1994).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Auld, B. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
[CrossRef]

Bloom, D. M.

A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
[CrossRef]

Doi, M.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.

Dudley, J. M.

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Futami, F.

Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Godil, A. A.

A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
[CrossRef]

Goedgebuer, J.-P.

Hansryd, J.

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Lacourt, P.-A.

Merolla, J.-M.

Mitzkevich, N. V.

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1994).
[CrossRef]

Moores, J. D.

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Murphy, T. E.

T. E. Murphy, “10-GHz 1.3 ps pulse generation using chirped soliton compression in a Raman gain medium,” IEEE Photon. Technol. Lett. 14, 1424–1426 (2002).
[CrossRef]

Onaka, H.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Porte, H.

Rhodes, W. T.

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

Sugiyama, M.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Takita, Y.

Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.

van Howe, J.

Watanabe, S.

Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Xu, C.

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24, 382–387 (1988).
[CrossRef]

A. A. Godil, B. A. Auld, and D. M. Bloom, “Picosecond time-lenses,” IEEE J. Quantum Electron. 30, 827–837 (1994).
[CrossRef]

N. N. Akhmediev and N. V. Mitzkevich, “Extremely high degree of N-soliton pulse compression in an optical fiber,” IEEE J. Quantum Electron. 27, 849–857 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. E. Murphy, “10-GHz 1.3 ps pulse generation using chirped soliton compression in a Raman gain medium,” IEEE Photon. Technol. Lett. 14, 1424–1426 (2002).
[CrossRef]

Opt. Lett. (3)

Other (2)

Y. Takita, F. Futami, M. Doi, and S. Watanabe , “Highly stable ultra-short pulse generation by filtering out flat optical frequency components,” in Proceedings of the Conference on Lasers and Electro-Optics 2004 (CLEO), ed. A. A. Sawchuk, vol. 96 of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1900), pp. 587–590.

M. Sugiyama, M. Doi, F. Futami, S. Watanabe, and H. Onaka, “A low drive voltage LiNbO3 phase and intensity integrated modulator for optical frequency comb generation and short pulse generation,” in European Conference on optical communications (ECOC), paper Tu 3.4.3 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. ECLD: external cavity laser diode, IM: intensity modulator, PM: phase modulator.

Fig. 2.
Fig. 2.

Intensity profiles of the linearly compressed pulses. Solid line: 5 km, Dashed line: 3 km, Dash-dot line: 7 km.

Fig. 3.
Fig. 3.

Phase profiles of the linearly compressed pulses. Solid line: 5 km, Dashed line: 3 km, Dash-dot line: 7 km.

Fig. 4.
Fig. 4.

Intensity profiles of the nonlinearly compressed pulses. Solid line: 3.4 km, Dashed line: 3.0 km, Dash-dot line: 3.8 km.

Fig. 5.
Fig. 5.

Phase profiles of the nonlinearly compressed pulses. Solid line: 3.4 km, Dashed line: 3.0 km, Dash-dot line: 3.8 km.

Metrics