Abstract

The combination of a diode-pumped Nd:YVO4 picosecond laser source with tapered fibers allows the realization of a compact white light source with an average output power of up to 5.65 W. We generated supercontinua with a throughput of ~50% over a spectral range of up to 1140 nm by using a series of tapered fibers that were spliced together.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coenet, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  3. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a.>
    [CrossRef] [PubMed]
  4. M. Seefeldt, A. Heuer, and R. Menzel, �??Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth,�?? Opt. Commun. 216, 199-202 (2003).
    [CrossRef]
  5. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864 �?? 2869 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a.>
    [CrossRef] [PubMed]
  6. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  7. J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, �??Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,�?? Appl. Phys. B 77, 245-250 (2003).
    [CrossRef]
  8. G. Hollemann, P. Heist, J. Symanowski, B. Braun, and U. Krause, �??Generation of 13.4 W picosecond pulsed output power at 355 nm based on a novel micro slab laser amplifier,�?? presented at CLEO/QELS, Baltimore, MD, USA, (2003), paper CThF5.
  9. T. A. Birks and Y. W. Li, �??The Shape of Fiber Tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  10. F. Warken and H. Giessen, �??Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,�?? Opt. Lett. 29, 1727-1729 (2004).
    [CrossRef] [PubMed]
  11. X. P. Zhang and H. Giessen, �??Cascaded four-wave mixing in a femtosecond optical parametric oscillator operating near the degeneracy point,�?? Appl. Phys. B 79, 441-447 (2004).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics �?? Optics and Photonics, Third Edition, 2001, Academic Press.
  13. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901-1-173901-4 (2002).
    [CrossRef]

Appl. Phys. B

J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, �??Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,�?? Appl. Phys. B 77, 245-250 (2003).
[CrossRef]

X. P. Zhang and H. Giessen, �??Cascaded four-wave mixing in a femtosecond optical parametric oscillator operating near the degeneracy point,�?? Appl. Phys. B 79, 441-447 (2004).
[CrossRef]

CLEO/QELS 2003

G. Hollemann, P. Heist, J. Symanowski, B. Braun, and U. Krause, �??Generation of 13.4 W picosecond pulsed output power at 355 nm based on a novel micro slab laser amplifier,�?? presented at CLEO/QELS, Baltimore, MD, USA, (2003), paper CThF5.

J. Lightwave Technol.

T. A. Birks and Y. W. Li, �??The Shape of Fiber Tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. Seefeldt, A. Heuer, and R. Menzel, �??Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth,�?? Opt. Commun. 216, 199-202 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901-1-173901-4 (2002).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics �?? Optics and Photonics, Third Edition, 2001, Academic Press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. We used two different diode-pumped, Nd:YVO4 laser sources in front of the tapered fiber. Input coupling was accomplished using a 0.3 NA microscope objective. The spectrometer was an ANDO AQ 6315A.

Fig. 2.
Fig. 2.

(a) Output spectrum of a tapered fiber as a function of input power of laser A. The waist diameter was 3.3 µm and the waist length was 90 mm. (b) shows calculated group velocity dispersion (GVD) curves for 2.0 µm, 3.0 µm, 3.3 µm, and 3.8 µm. Positive values correspond to anomalous dispersion. The zero dispersion wavelengths are located at 715 nm, 835 nm, 865 nm, and 905 nm, respectively.

Fig. 3.
Fig. 3.

Output spectrum of a “double taper” as a function of input power using laser A. The average waist diameters were 2.9 µm and 2.5 µm, and the waist lengths were 90 mm each.

Fig. 4.
Fig. 4.

Output spectrum of a “triple taper” made of three tapers of 3.0 µm average waist diameter and 90 mm waist length each as a function of input power of laser A.

Fig. 5.
Fig. 5.

Output spectra behind laser B as a function of the number of tapered fibers spliced together. The diameters are given in the figure, and the waist lengths are 90 mm each.

Fig. 6.
Fig. 6.

Output spectra of three triple tapers with a similar diameter in comparison to a mixed configuration of three fibers. Each single tapered fiber has a waist length of 90 mm. The pump source was laser B.

Metrics