Abstract

This study introduces an experimental approach to estimate percentage of hemoglobin content and volume sampled by near infrared spectroscopy (NIRS). Carbogen (5% CO2, 95% O2) respiratory intervention was used to induce physiological changes in a group of six Fisher rat breast tumors. Changes in total hemoglobin concentration, Δ[Hb]total, and in total blood volume, ΔVT-blood, of the tumors were measured by NIRS and 19F magnetic resonance spectroscopy of perflubron, respectively. The ratio of Δ[Hb]total/ΔVT-blood was used to calculate the fraction of hemoglobin contents sampled by NIRS. The results showed that the mean value of estimated fractions is within a range of 15~30% of total hemoglobin content in the tumor tissues. Based on the results, we suggest that NIRS does not sample the entire hemoglobin volume of the tissue vasculature, but is more sensitive to microvasculature. This study helps to understand the blood vascular volume sampled by NIRS, and demonstrates that the low cost, portable NIRS system may be a reliable, non-invasive, real-time, monitoring tool for changes in tumor blood contents.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters

Yueqing Gu, Vincent A. Bourke, Jae G. Kim, Anca Constantinescu, Ralph P. Mason, and Hanli Liu
Appl. Opt. 42(16) 2960-2967 (2003)

Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy

Hanli Liu, Yulin Song, Katherine L. Worden, Xin Jiang, Anca Constantinescu, and Ralph P. Mason
Appl. Opt. 39(28) 5231-5243 (2000)

References

  • View by:
  • |
  • |
  • |

  1. W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
    [Crossref]
  2. N. Ramanujam, “Fluorescence spectroscopy of Neoplastic and non-Neoplastic tissue,” Neoplasia. 2, 89–117 (2000).
    [Crossref] [PubMed]
  3. A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
    [Crossref]
  4. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
    [Crossref] [PubMed]
  5. V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).
  6. B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
    [Crossref]
  7. K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
    [Crossref] [PubMed]
  8. A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
    [Crossref] [PubMed]
  9. E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [Crossref] [PubMed]
  10. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
    [Crossref]
  11. J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
    [Crossref] [PubMed]
  12. Y. Gu, V. Bourke, J. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960–67 (2003).
    [Crossref] [PubMed]
  13. H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
    [Crossref] [PubMed]
  14. M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
    [Crossref] [PubMed]
  15. B. W. Pogue, E. A. White, U. L. Osterberg, and K. D. Paulsen, “Absorbance of opaque microstructures in optically diffuse media,” Appl. Opt. 40, 4616–4621 (2001).
    [Crossref]
  16. M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
    [PubMed]
  17. R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
    [PubMed]
  18. C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
    [PubMed]
  19. N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
    [Crossref] [PubMed]
  20. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref] [PubMed]
  21. Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
    [Crossref]
  22. H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
    [Crossref]
  23. E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
    [Crossref] [PubMed]
  24. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. of Biol. Chem. 148, 173–183 (1943).
  25. E. J. Van Kampen and W. G. Zijlstra, “Determination of hemoglobin and its derivatives,” Adv. Clin. Chem. 8, 141–187 (1965).
    [Crossref] [PubMed]
  26. R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
    [Crossref] [PubMed]
  27. R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
    [Crossref] [PubMed]
  28. O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43–48 (1975).
    [Crossref] [PubMed]
  29. W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).
  30. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. thesis, Appendix B, 316–323, University College London (1991).
  31. S. I. Fox, Human Physiology, 6th edition, McGraw-Hill Companies, Inc. Chapter 13, Heart and Circulation, 388–391(1999).
  32. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
    [Crossref] [PubMed]
  33. M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
    [Crossref]
  34. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
    [Crossref] [PubMed]
  35. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
    [Crossref] [PubMed]
  36. J. S. Ultman and C. A. Piantadosi, “Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method,” Math. Biosci. 107, 73–82 (1991).
    [Crossref] [PubMed]
  37. P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
    [PubMed]
  38. L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near infrared frequency-domain spectroscopy,” Degree of Doctor of Philosophy (University of Illinois, Urbana, 2001).
  39. H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
    [Crossref] [PubMed]
  40. R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
    [Crossref]
  41. R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
    [Crossref] [PubMed]
  42. J. R. Forder and G. M. Pohost, “Cardiovascular nuclear magnetic resonance: basic and clinical applications,” J. Clin. Invest. 111, 1630–1639 (2003).
    [PubMed]

2003 (3)

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

Y. Gu, V. Bourke, J. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960–67 (2003).
[Crossref] [PubMed]

J. R. Forder and G. M. Pohost, “Cardiovascular nuclear magnetic resonance: basic and clinical applications,” J. Clin. Invest. 111, 1630–1639 (2003).
[PubMed]

2002 (2)

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

2001 (2)

B. W. Pogue, E. A. White, U. L. Osterberg, and K. D. Paulsen, “Absorbance of opaque microstructures in optically diffuse media,” Appl. Opt. 40, 4616–4621 (2001).
[Crossref]

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

2000 (2)

1999 (4)

A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
[Crossref]

V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).

B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
[Crossref]

K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
[Crossref] [PubMed]

1998 (2)

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

1997 (1)

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
[Crossref] [PubMed]

1996 (1)

N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
[Crossref] [PubMed]

1995 (2)

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

1994 (3)

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[Crossref]

1993 (2)

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

1992 (4)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
[Crossref] [PubMed]

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

1991 (2)

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

J. S. Ultman and C. A. Piantadosi, “Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method,” Math. Biosci. 107, 73–82 (1991).
[Crossref] [PubMed]

1990 (2)

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
[Crossref]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

1980 (1)

A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
[Crossref] [PubMed]

1975 (1)

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43–48 (1975).
[Crossref] [PubMed]

1973 (1)

R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
[Crossref] [PubMed]

1965 (2)

E. J. Van Kampen and W. G. Zijlstra, “Determination of hemoglobin and its derivatives,” Adv. Clin. Chem. 8, 141–187 (1965).
[Crossref] [PubMed]

R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
[Crossref] [PubMed]

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. of Biol. Chem. 148, 173–183 (1943).

Adams, G.E.

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

Anday, E.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Antich, P. P.

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

Antich, P.P.

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
[Crossref] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

Babcock, E. E.

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Badimon, J. J.

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Baldwin, N. J.

N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
[Crossref] [PubMed]

Beauvoit, B.

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Benesch, R.

R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
[Crossref] [PubMed]

R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
[Crossref] [PubMed]

Benesch, R. E.

R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
[Crossref] [PubMed]

R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
[Crossref] [PubMed]

Blessington, D.

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

Boas, D. A.

A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
[Crossref]

Bourke, V.

Buursma, A.

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

Carraresi, L.

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

Catsburg, J. F.

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

Chance, B.

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
[Crossref] [PubMed]

Chen, J.

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

Cheong, W.

W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
[Crossref]

Choudhury, R. P.

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Colier, W. N.

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

Constantinescu, A.

Conti, G.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
[Crossref] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. thesis, Appendix B, 316–323, University College London (1991).

Counsell, C.

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

De Blasi, R. A.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

Delpy, D. T.

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
[Crossref] [PubMed]

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Drezek, R.

K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
[Crossref] [PubMed]

Edwards, A. D.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Essenpreis, M.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Falke, H. E.

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

Fayad, Z. A.

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Ferrari, M.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

Firbank, M.

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
[Crossref] [PubMed]

Fisher, E. A.

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Forder, J. R.

J. R. Forder and G. M. Pohost, “Cardiovascular nuclear magnetic resonance: basic and clinical applications,” J. Clin. Invest. 111, 1630–1639 (2003).
[PubMed]

Fox, S. I.

S. I. Fox, Human Physiology, 6th edition, McGraw-Hill Companies, Inc. Chapter 13, Heart and Circulation, 388–391(1999).

Fuster, V.

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Gasparetto, A.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

Gossage, K.

K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
[Crossref] [PubMed]

Gu, Y.

Y. Gu, V. Bourke, J. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960–67 (2003).
[Crossref] [PubMed]

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

Hahn, E. W.

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Heekeren, H. R.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Hielscher, A. H.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

Hong, L.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. of Biol. Chem. 148, 173–183 (1943).

Horst, S.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Jacques, S. L.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

Jiang, X.

Kim, J.

Kim, J. G.

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

Kitagishi, K.

R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[Crossref]

Kohl, M.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Lebourdais, S.

A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
[Crossref] [PubMed]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Li, C.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Liu, H.

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

Y. Gu, V. Bourke, J. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960–67 (2003).
[Crossref] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[Crossref]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Ma, H.

V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).

Macduff, G.

R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
[Crossref] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Marota, J. J. A.

A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
[Crossref]

Mason, R. P.

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

Y. Gu, V. Bourke, J. Kim, A. Constantinescu, R. P. Mason, and H. Liu, “Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters,” Appl. Opt. 42, 2960–67 (2003).
[Crossref] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[Crossref]

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Mayevsky, A.

A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
[Crossref] [PubMed]

McBride, T.

B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
[Crossref]

McCormick, D. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Mega, A.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

Miwa, M.

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Morgan, K.

R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[Crossref]

Murray, T.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Natali, A.

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

Ng, T. C.

N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
[Crossref] [PubMed]

Nioka, S.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Nolte, C.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Ntaiachristors, V.

V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).

Obrig, H.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Okada, E.

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
[Crossref] [PubMed]

Osterberg, U. L.

Ovetsky, Y.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Paulsen, K. D.

Paunescu, L. A.

L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near infrared frequency-domain spectroscopy,” Degree of Doctor of Philosophy (University of Illinois, Urbana, 2001).

Peschke, P.

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Piantadosi, C. A.

J. S. Ultman and C. A. Piantadosi, “Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method,” Math. Biosci. 107, 73–82 (1991).
[Crossref] [PubMed]

Pidikiti, D.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue, E. A. White, U. L. Osterberg, and K. D. Paulsen, “Absorbance of opaque microstructures in optically diffuse media,” Appl. Opt. 40, 4616–4621 (2001).
[Crossref]

B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
[Crossref]

Pohost, G. M.

J. R. Forder and G. M. Pohost, “Cardiovascular nuclear magnetic resonance: basic and clinical applications,” J. Clin. Invest. 111, 1630–1639 (2003).
[PubMed]

Potter, L. A.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Prahl, S. A.

W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
[Crossref]

Qian, Z.

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

Ramanujam, N.

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

N. Ramanujam, “Fluorescence spectroscopy of Neoplastic and non-Neoplastic tissue,” Neoplasia. 2, 89–117 (2000).
[Crossref] [PubMed]

Reynolds, E. O. R.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Roth, S. C.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Scholz, U.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Shukla, H. P.

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

Siege, A. M.

A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
[Crossref]

Sokolov, K.

K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
[Crossref] [PubMed]

Song, Y.

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[Crossref]

Steen, R. G.

R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[Crossref]

Testorf, M.

B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
[Crossref]

Thomas, C.

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

Thomas, R.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Tittel, F. K.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

Ultman, J. S.

J. S. Ultman and C. A. Piantadosi, “Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method,” Math. Biosci. 107, 73–82 (1991).
[Crossref] [PubMed]

Van Assendelft, O. W.

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43–48 (1975).
[Crossref] [PubMed]

Van Beekvelt, M. C.

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

van der Zee, P.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Van Engelen, B. G.

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

Van Kampen, E. J.

E. J. Van Kampen and W. G. Zijlstra, “Determination of hemoglobin and its derivatives,” Adv. Clin. Chem. 8, 141–187 (1965).
[Crossref] [PubMed]

Villringer, A.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Wang, N.G.

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Wang, Y.

N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
[Crossref] [PubMed]

Wei, Q.

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

Welch, A. J.

W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
[Crossref]

Wevers, R. A.

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

White, E. A.

Woessner, D. E.

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

Wood, P.

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

Worden, K.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Worden, K. L.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J. S.

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

Yung, S.

R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
[Crossref] [PubMed]

Zaccanti, G.

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

Zhao, D.

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

Zhou, S.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43–48 (1975).
[Crossref] [PubMed]

E. J. Van Kampen and W. G. Zijlstra, “Determination of hemoglobin and its derivatives,” Adv. Clin. Chem. 8, 141–187 (1965).
[Crossref] [PubMed]

Adv. Clin. Chem. (1)

E. J. Van Kampen and W. G. Zijlstra, “Determination of hemoglobin and its derivatives,” Adv. Clin. Chem. 8, 141–187 (1965).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (2)

P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. R. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infants as a function of inter optode spacing,” Adv. Exp. Med. Biol.,  316, 143–153 (1992).
[Crossref] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain,” Adv. Exp. Med. Biol. 277, 79–84 (1990).
[PubMed]

Anal. Biochem. (5)

H. Liu, M. Miwa, B. Beauvoit, N.G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

R. Benesch, G. Macduff, and R. E. Benesch, “Determination of oxygen equilibria with a versatile new tonometer,” Anal. Biochem. 11, 81–87 (1965).
[Crossref] [PubMed]

R. E. Benesch, R. Benesch, and S. Yung, “Equations for the spectrophotometric analysis of hemoglobin mixtures,” Anal. Biochem. 55, 245–248(1973).
[Crossref] [PubMed]

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43–48 (1975).
[Crossref] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, and M. Maris, “Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[Crossref] [PubMed]

Appl. Opt. (3)

Arteriosclerosis, Thrombosis, and Vascular Biology (1)

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and Characterization of Atherosclerotic Plaque,” Arteriosclerosis, Thrombosis, and Vascular Biology 22,1065–1072 (2002).
[Crossref] [PubMed]

Comp. Biochem. Physiol. (1)

W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comp. Biochem. Physiol. 107B, 161–166 (1994).

IEEE J. Quantum Electron. (1)

W. Cheong, S. A. Prahl, and A. J. Welch,.“A review of the optical properties of biological tissue,” IEEE J. Quantum Electron. 26, 2166–2183 (1990).
[Crossref]

J. Appl Physiol. (1)

R. A. De Blasi, M. Ferrari, A. Natali, G. Conti, A. Mega, and A. Gasparetto, “Noninvasive measurement of forearm blood flow and oxygen consumption by near infrared spectroscopy,” J. Appl Physiol. 76, 1388–1393 (1994).
[PubMed]

J. Appl. Physiol. (1)

M. C. Van Beekvelt, W. N. Colier, R. A. Wevers, and B. G. Van Engelen, “Performance of near infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90, 511–519 (2001).
[PubMed]

J. Biomed. Opt. (1)

J. G. Kim, Y. Song, D. Zhao, A. Constantinescu, R. P. Mason, and H. Liu, “Interplay of Tumor Vascular Oxygenation and pO2 in Tumors Using NIRS, 19F MR pO2 Mapping, and pO2 Needle Electrode,” J. Biomed. Opt. 8, 53–62 (2003).
[Crossref] [PubMed]

J. Clin. Invest. (1)

J. R. Forder and G. M. Pohost, “Cardiovascular nuclear magnetic resonance: basic and clinical applications,” J. Clin. Invest. 111, 1630–1639 (2003).
[PubMed]

J. Magn. Reson. B (1)

H. P. Shukla, R. P. Mason, D. E. Woessner, and P. P. Antich, “A comparison of three commercial perfluorocarbon emulsions as high field NMR probes of oxygen tension and temperature,” J. Magn. Reson. B,  106, 131–141 (1995).
[Crossref]

J. Neuro-Oncol. (1)

R. G. Steen, K. Kitagishi, and K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: Immediate effects of pentobarbital overdose or carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[Crossref]

J. Neurosci. Res. (1)

A. Mayevsky, S. Lebourdais, and B. Chance, “The interrelation between brain PO2 and NADH oxidation-reduction state in the Gerbil,” J. Neurosci. Res. 5, 173–182 (1980).
[Crossref] [PubMed]

J. of Biol. Chem. (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” J. of Biol. Chem. 148, 173–183 (1943).

J. Photochem. Photobiol. B:Biol. (1)

M. Ferrari, Q. Wei, L. Carraresi, R. A. de Blasi, and G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B:Biol.,  16, 141–153 (1992).
[Crossref]

JNCI (1)

C. Thomas, C. Counsell, P. Wood, and G.E. Adams “Use of F-19 NMR spectroscopy and hydralazine for measuring dynamic changes in blood perfusion volume in tumors in mice,” JNCI 84,174–80(1992).
[PubMed]

Magn. Reson. Imaging (1)

N. J. Baldwin, Y. Wang, and T. C. Ng, “In situ 19F MRS measurement of RIF-1 tumor blood volume: Corroboration by radioisotope-labeled [125I]-albumin and correlation to tumor size,” Magn. Reson. Imaging,  14, 275–280 (1996).
[Crossref] [PubMed]

Magn.Reson. Imaging (1)

E. W. Hahn, P. Peschke, R. P. Mason, E. E. Babcock, and P.P. Antich, “Isolated tumor growth in a surgically formed skin pedicle in the rat: A new tumor model for NMR studies,” Magn.Reson. Imaging 11, 1007–1017 (1993).
[Crossref] [PubMed]

Math. Biosci. (1)

J. S. Ultman and C. A. Piantadosi, “Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method,” Math. Biosci. 107, 73–82 (1991).
[Crossref] [PubMed]

Med. Phys. (1)

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, and B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1216 (1995).
[Crossref] [PubMed]

Neoplasia. (1)

N. Ramanujam, “Fluorescence spectroscopy of Neoplastic and non-Neoplastic tissue,” Neoplasia. 2, 89–117 (2000).
[Crossref] [PubMed]

Opt. Express. (4)

A. M. Siege, J. J. A. Marota, and D. A. Boas. “Design and evaluation of a continuous wave diffuse optical tomography system,” Opt. Express. 4, 287–298 (1999).
[Crossref]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998).
[Crossref] [PubMed]

B. W. Pogue, M. Testorf, and T. McBride, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express. 1, 391–403 (1999).
[Crossref]

K. Sokolov, R. Drezek, and K. Gossage, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express. 5, 302–317 (1999).
[Crossref] [PubMed]

Phys. Med. Biol. (4)

M. Firbank, E. Okada, and D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477(1997).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.,  37, 1531–1560 (1992).
[Crossref] [PubMed]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, “Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals,” Phys. Med. Biol.,  43, 1771–1782 (1998).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, and B. Chance, “High resolution three dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).
[Crossref]

V. Ntaiachristors, H. Ma, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 1444–1451 (1999).

Other (3)

L. A. Paunescu, “Tissue blood flow and oxygen consumption measured with near infrared frequency-domain spectroscopy,” Degree of Doctor of Philosophy (University of Illinois, Urbana, 2001).

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. thesis, Appendix B, 316–323, University College London (1991).

S. I. Fox, Human Physiology, 6th edition, McGraw-Hill Companies, Inc. Chapter 13, Heart and Circulation, 388–391(1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic diagram of experimental setup for the NIRS system. A 3 mm-diameter fiber bundles delivered and detected the laser light through the rat tumor in transmittance geometry. PMT represents a photomultiplier tube. I/Q is an in-phase and quadrature phase demodulator for retrieving amplitude information.
Fig. 2.
Fig. 2. Temporal profile of Δ[Hb]Total and VT-blood for a representative rat breast tumor (2.6 cm3) with respect to carbogen (CB) intervention, monitored by NIRS and 19F MRS of perflubron, respectively. Error bars indicate the standard deviation.

Tables (1)

Tables Icon

Table 1. Percentage of tumor vascular blood volume sampled by NIRS over that by 19F MRS

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

V T _ blood = V S _ blood · ( I T _ blood I S _ blood ) · ( I S _ TFA I T _ TFA ) ,
Optical Density ( OD ) = Log ( A 0 A ) = ε cl
Δ OD ( λ ) = log ( A B A T ) = { ε Hb ( λ ) Δ [Hb ] + ε HbO 2 ( λ ) Δ [ HbO 2 ] } l ,
Δ [ HbO 2 ] = ε Hb ( λ 2 ) Δ OD ( λ 1 ) ε Hb ( λ 1 ) Δ OD ( λ 2 ) l [ ε Hb ( λ 2 ) ε HbO 2 ( λ 1 ) ε Hb ( λ 1 ) ε HbO 2 ( λ 2 ) ] ,
Δ [ Hb ] = ε HbO 2 ( λ 2 ) Δ OD ( λ 1 ) ε HbO 2 ( λ 1 ) Δ OD ( λ 2 ) l [ ε Hb ( λ 1 ) ε HbO 2 ( λ 2 ) ε Hb ( λ 2 ) ε HbO 2 ( λ 1 ) ] .
Δ [ H b O 2 ] = ε Hb ( 785 nm ) β 1 × Δ OD ( 758 nm ) ε Hb ( 758 nm ) × Δ OD ( 785 nm ) l [ ε Hb ( 785 nm ) ε HbO 2 ( 758 nm ) ε Hb ( 758 nm ) ε HbO 2 ( 785 nm ) ] ,
Δ [ H b ] = ε HbO 2 ( 785 nm ) β 2 × Δ OD ( 758 nm ) ε HbO 2 ( 758 nm ) × Δ OD ( 785 nm ) l [ ε Hb ( 785 nm ) ε HbO 2 ( 758 nm ) ε Hb ( 758 nm ) ε HbO 2 ( 785 nm ) ] .
Δ [ H b O 2 ] = 2.658 × Δ OD ( 758 nm ) + 3.743 × Δ OD ( 785 nm ) d × DPF ,
Δ [ H b ] = 2.238 × Δ OD ( 758 nm ) 1.683 × Δ OD ( 785 nm ) d × DPF .
Δ [ Hb ] total = Δ [ H b O 2 ] + Δ [ Hb ] = 0.42 × OD ( 758 nm ) + 2.06 × OD ( 785 nm ) d × DPF .
Δ [ Hb ] total = Δ [ H b O 2 ] + Δ [ Hb ] = 0.42 × OD ( 758 nm ) + 2.06 × OD ( 785 nm ) d .
[ C Hb ] tumor _ NIRS = [ Hb ] total × M × V T physical ,
Δ [ C Hb ] tumor _ NIRS = Δ [ Hb ] total × M × V T physical ,
[ C Hb ] tumor _ MRS = V T blood × K ,
Δ [ C Hb ] tumor _ MRS = Δ V T blood × K ,
[ C Hb ] tumor _ NIRS = γ [ C Hb ] tumor _ MRS .
Δ [ C Hb ] tumor _ NIRS = γ Δ [ C Hb ] tumor _ MRS .
γ = Δ [ C Hb ] tumor _ NIRS Δ [ C Hb ] tumor _ MRS * 100 % = M × V T physical K × Δ [ Hb ] total Δ V T blood × 100 % ,
γ = [ C Hb ] tumor _ NIRS [ C Hb ] tumor _ MRS × 100 % = Δ [ C Hb ] tumor _ NIRS Δ [ C Hb ] tumor _ MRS × 100 %
= 68000 [ g mole ] × 2.6 [ c m 3 ] 150 [ g l ] × 0.0185 [ m M DPF ] 0.028 [ cm 3 ] 100 % 77.9 % DPF .

Metrics