Abstract

All-optical return-to-zero (RZ) to non-return-to-zero (NRZ) format conversion has been demonstrated using cross-phase modulation in a dispersion-shifted fiber, which can in principle work with different signal bit rates and does not require any external pulse duplicator. The output wavelength-converted signal is obtained from filtering of the broadened optical spectrum. A power penalty of 2 dB is obtained at 10-9 bit-error-rate level in a 10 Gb/s conversion experiment.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Bigo, O. Leclerc, and E. Desurvire, �??All-optical fiber signal processing and regeneration for soliton communications,�?? IEEE J. Select. Topics Quantum Electron., 3, 1208�??1222 (1997).
    [CrossRef]
  2. H. J. Lee, and S. J. B. Yoo, �??Novel all-optical 10 Gbp/s RZ-to-NRZ conversion using SOA-loop-mirror,�?? in Optical Fiber Communication Conference and Exhibit, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. MB7-1�??MB7-3.
  3. H. Kawaguchi, Y. Yamayoshi, and K. Tamura, �??All-optical format conversion using an ultrafast polarization bistable vertical-cavity surfaceemitting laser,�?? in Lasers and Electro-Optics Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 379�??380.
  4. D. Norte, and A. E. Willner, �??Experimental demonstrations of all-optical conversion between RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,�?? IEEE Photon. Technol. Lett., 8, 712�??714 (1996).
    [CrossRef]
  5. B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Joergensen, A. Kloch, P. B. Hansen, K. E. Stubkjaer, K. Wunstel, K. Daub, E. Lach, G. Laube,W. Idler, M. Schilling, and S. Bouchoule, �??40Gb/s all-optical wavelength converter and RZ-to-NRZ format adapter realized by monolithic integrated active Michelson interferometer,�?? Electron. Lett., 33, 133�??134 (1997).
    [CrossRef]
  6. S. G. Park, L. H. Spiekman, M. Eiselt, and J. M.Weisenfeld, �??Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,�?? IEEE Photon. Technol. Lett., 12, 233�??235 (2000).
    [CrossRef]
  7. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, �??All-optical data format conversion between RZ and NRZ based on a mach�??zehnder interferometric wavelength converter,�?? IEEE Photon. Technol. Lett., 15, 308�??310 (2003).
    [CrossRef]
  8. C. W. Chow, C. S. Wong, and H. K. Tsang, �??RZ to NRZ data format and wavelength conversion using an injection locked laser diode,�?? in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 475�??476.
  9. C. W. Chow, C. S. Wong, and H. K. Tsang, �??All-optical modulation format conversion and multicasting using injection-locked laser diodes,�?? IEEE J. Lightwave Technol., 22, pp. 2386�??2392 (2004).
    [CrossRef]
  10. S.W. Chan, K. K. Chow, C. Shu, �??All-optical NRZ to RZ data conversion by cross phase modulation in a dispersion shifted fiber,�?? in Technical Digest of OptoElectronics and Communications Conference, 11D2-3 (2002).
  11. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Chap. 7.
  12. P.S. Cho, D. Mahgerefteh and J. Goldhar, �??10 Gb/s RZ to NRZ format conversion using a semiconductor-optical- amplifier/fiber-Bragg-grating wavelength converter,�?? in Proceedings of European Conference on Optical Communication, 1, pp. 20�??24 (1998).

Conference on Lasers and Electro-Optics

C. W. Chow, C. S. Wong, and H. K. Tsang, �??RZ to NRZ data format and wavelength conversion using an injection locked laser diode,�?? in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 475�??476.

Electron. Lett.

B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Joergensen, A. Kloch, P. B. Hansen, K. E. Stubkjaer, K. Wunstel, K. Daub, E. Lach, G. Laube,W. Idler, M. Schilling, and S. Bouchoule, �??40Gb/s all-optical wavelength converter and RZ-to-NRZ format adapter realized by monolithic integrated active Michelson interferometer,�?? Electron. Lett., 33, 133�??134 (1997).
[CrossRef]

European Conference on Optical Commun.

P.S. Cho, D. Mahgerefteh and J. Goldhar, �??10 Gb/s RZ to NRZ format conversion using a semiconductor-optical- amplifier/fiber-Bragg-grating wavelength converter,�?? in Proceedings of European Conference on Optical Communication, 1, pp. 20�??24 (1998).

IEEE J. Lightwave Technol.

C. W. Chow, C. S. Wong, and H. K. Tsang, �??All-optical modulation format conversion and multicasting using injection-locked laser diodes,�?? IEEE J. Lightwave Technol., 22, pp. 2386�??2392 (2004).
[CrossRef]

IEEE J. Select. Topics Quantum Electron.

S. Bigo, O. Leclerc, and E. Desurvire, �??All-optical fiber signal processing and regeneration for soliton communications,�?? IEEE J. Select. Topics Quantum Electron., 3, 1208�??1222 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Norte, and A. E. Willner, �??Experimental demonstrations of all-optical conversion between RZ and NRZ data formats incorporating noninverting wavelength shifting leading to format transparency,�?? IEEE Photon. Technol. Lett., 8, 712�??714 (1996).
[CrossRef]

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M.Weisenfeld, �??Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,�?? IEEE Photon. Technol. Lett., 12, 233�??235 (2000).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, �??All-optical data format conversion between RZ and NRZ based on a mach�??zehnder interferometric wavelength converter,�?? IEEE Photon. Technol. Lett., 15, 308�??310 (2003).
[CrossRef]

Lasers and Electro-Optics Conference

H. Kawaguchi, Y. Yamayoshi, and K. Tamura, �??All-optical format conversion using an ultrafast polarization bistable vertical-cavity surfaceemitting laser,�?? in Lasers and Electro-Optics Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), pp. 379�??380.

OptoElectronics and Communications Conf.

S.W. Chan, K. K. Chow, C. Shu, �??All-optical NRZ to RZ data conversion by cross phase modulation in a dispersion shifted fiber,�?? in Technical Digest of OptoElectronics and Communications Conference, 11D2-3 (2002).

OSA Technical Digest Series

H. J. Lee, and S. J. B. Yoo, �??Novel all-optical 10 Gbp/s RZ-to-NRZ conversion using SOA-loop-mirror,�?? in Optical Fiber Communication Conference and Exhibit, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. MB7-1�??MB7-3.

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of the proposed RZ-to-NRZ format conversion

Fig. 2.
Fig. 2.

Experimental setup on RZ to NRZ format conversion using cross-phase modulation in a dispersion-shifted fiber. DFB1, DFB2, distributed-feedback laser diode; PC1, PC2, polarization controller; EDFA, erbium-doped fiber amplifier; DSF, dispersion-shifted fiber; BPF, band pass filter; BER TEST SET, bit-error-rate test set.

Fig. 3.
Fig. 3.

Optical spectra showing the input signal (1549.0 nm) and the cw light (1552.5 nm) before the EDFA, after the DSF, and in the filtered output.

Fig. 4.
Fig. 4.

Dependence of the extinction ratio of the output NRZ signal on the cw probe wavelength.

Fig. 5.
Fig. 5.

BER performance of the back-to-back RZ and the output NRZ signals.

Fig. 6.
Fig. 6.

(a) Eye diagram of 10 Gb/s RZ input signal; (b) Eye diagram of 10 Gb/s NRZ output signal; (c) 10 G/s RZ input data pattern; (d) 10 Gb/s NRZ output data pattern.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ probe = 2 γ L eff P signal

Metrics