Abstract

We present the characterization of highly photorefractive Er3+/Yb3+-doped 75SiO2-25GeO2 planar waveguides, single mode at 1550 nm, deposited by radio-frequency-magnetron-sputtering (RFMS) technique. Details of the deposition process are reported. The material presents an intense absorption band (α≈103÷104 cm-1) in the UV region. Irradiations by a KrF excimer laser source at λ=248 nm have produced large positive (up to 3·10-3) refractive index changes, without the need of particular sensitization procedures. Direct measurements of UV photo-induced volume densification demonstrates that glass compaction accounts for large part of the refractive index change. Highly efficient photo-induced phase gratings have thus been fabricated in the waveguide.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. Di Giovanni, R. M. Atkins, �??Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,�?? Appl. Phys. Lett. 63, 1727-1729 (1993).
    [CrossRef]
  2. M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen, �??Direct UV writing of buried single mode channel waveguides in Ge-doped silica films,�?? Electron. Lett. 30, 1401-1403 (1994).
    [CrossRef]
  3. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, P.G.R. Smith, �??Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,�?? Electron. Lett. 38, 1531-1532 (2002).
    [CrossRef]
  4. H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Kintaka, J. Nishii, �??Direct laser writing of thermally stabilized channel waveguides with Bragg gratings,�?? Opt. Express 12, 4589-4595 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4589</a>
    [CrossRef] [PubMed]
  5. J. Nishii, H. Yamanaka, H. Hosono, K. Kawazoe, �??Preparation of Bragg gratings in sputter-deposited GeO2-SiO2 glasses by excimer-laser irradiation,�?? Opt. Lett. 21, 1369-1362 (1996).
    [CrossRef]
  6. H. Hosono, J. Nishii, �??High photosensitivity and nanometer-scale phase separation in GeO2SiO2 glass thin films,�?? Opt. Lett. 24, 1352-1354 (1999).
    [CrossRef]
  7. M. Takahashi, A. Sakoh, K. Ishii, Y. Tokuda, T. Yoko, J. Nishii, �??Photosensitive GeO2-SiO2 films for ultraviolet laser writing of channel waveguides and Bragg gratings with Cr-loaded waveguide structure,�?? Appl. Opt. 42, 4594-4598 (2003).
    [CrossRef] [PubMed]
  8. A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G.C. Righini, M. Ferrari, L. Zampedri, A. Monteil, P. Lazzeri, �??Enhanced spectroscopic properties at 1.5 µm in Er/Yb activated silica-titania planar waveguides fabricated by rf-sputtering,�?? Opt. Mat. 25, 117-122 (2004).
    [CrossRef]
  9. J. Nishii, H. Yamanaka, �??Characteristics of 5-eV band in sputter deposited GeO2-SiO2 thin films glass films,�?? Appl. Phys. Lett. 64, 282-284 (1994).
    [CrossRef]
  10. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, H. Kawazoe, �??Ultraviolet-radiation-induced chemical reactions through one- and two-photon absorption processes in GeO2-SiO2 glasses,�?? Opt. Lett. 20, 1184 (1995).
    [CrossRef] [PubMed]
  11. H. Hosono, M. Mizuguchi, H. Kawazoe, J. Nishii, �??Correlation between GeE�?? centres and optical absorption bands in SiO2:GeO2 glasses,�?? Jpn. J. Appl. Phys. 35 (2B), Part2, 234-236 (1996).
    [CrossRef]
  12. H. Hosono, Y. Abe, D.L. Kinser, R.A. Weeks, K. Muta, H. Kawazoe, �??Nature and origin of the 5-eV band in SiO2:GeO2 glasses,�?? Phys. Rev. B 46, 11445-11450 (1992).
    [CrossRef]
  13. B. L. Zhang, K. Raghavachari, �??Photoabsorption and photoluminescence of divalent defects in silicate and germanosilicate glasses: First-principles calculations,�?? Phys. Rev. B 55, R15993-R15996 (1997).
    [CrossRef]
  14. G. Pacchioni, I. Ieranò, �??Ab initio formation energies of point defects in pure and Ge-doped SiO2,�?? Phys. Rev. B 56, 7304-7312 (1997).
    [CrossRef]
  15. T. Uchino, M. Takahashi, K. Ichii, T. Yoko, �??Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,�?? Phys. Rev. B 65, 172202-1 (2002).
    [CrossRef]
  16. P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F.Bayon, L. Dong, �??Evidence by transmission electron microscopy of densification associated to Bragg grating photoimprinting in germanosilicate optical fibers,�?? Appl. Phys. Lett. 70, 1204-1206 (1997).
    [CrossRef]
  17. N. F. Borrelli, D. C. Allan, R. A. Modavis, �??Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks,�?? JOSA B 16, 1672-1679 (1999).
    [CrossRef]
  18. M. Born, E. Wolf, �??The mean polarizability: the Lorentz-Lorenz formula,�?? in Principles of Optics, (Pergamon Press, Oxford, 1980), pp. 87.
  19. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, �??Bragg gratings fabricated in monomode photosensitive optical fiber by exposure through a phase mask�??, Appl. Phys. Lett. 62, 1035-1037 (1993).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Nishii, H. Yamanaka, �??Characteristics of 5-eV band in sputter deposited GeO2-SiO2 thin films glass films,�?? Appl. Phys. Lett. 64, 282-284 (1994).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. Di Giovanni, R. M. Atkins, �??Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,�?? Appl. Phys. Lett. 63, 1727-1729 (1993).
[CrossRef]

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F.Bayon, L. Dong, �??Evidence by transmission electron microscopy of densification associated to Bragg grating photoimprinting in germanosilicate optical fibers,�?? Appl. Phys. Lett. 70, 1204-1206 (1997).
[CrossRef]

K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, �??Bragg gratings fabricated in monomode photosensitive optical fiber by exposure through a phase mask�??, Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Electron. Lett.

M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen, �??Direct UV writing of buried single mode channel waveguides in Ge-doped silica films,�?? Electron. Lett. 30, 1401-1403 (1994).
[CrossRef]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, P.G.R. Smith, �??Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,�?? Electron. Lett. 38, 1531-1532 (2002).
[CrossRef]

JOSA B

N. F. Borrelli, D. C. Allan, R. A. Modavis, �??Direct measurement of 248- and 193-nm excimer-induced densification in silica-germania waveguide blanks,�?? JOSA B 16, 1672-1679 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

H. Hosono, M. Mizuguchi, H. Kawazoe, J. Nishii, �??Correlation between GeE�?? centres and optical absorption bands in SiO2:GeO2 glasses,�?? Jpn. J. Appl. Phys. 35 (2B), Part2, 234-236 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mat.

A. Chiasera, M. Montagna, C. Tosello, S. Pelli, G.C. Righini, M. Ferrari, L. Zampedri, A. Monteil, P. Lazzeri, �??Enhanced spectroscopic properties at 1.5 µm in Er/Yb activated silica-titania planar waveguides fabricated by rf-sputtering,�?? Opt. Mat. 25, 117-122 (2004).
[CrossRef]

Phys. Rev. B

H. Hosono, Y. Abe, D.L. Kinser, R.A. Weeks, K. Muta, H. Kawazoe, �??Nature and origin of the 5-eV band in SiO2:GeO2 glasses,�?? Phys. Rev. B 46, 11445-11450 (1992).
[CrossRef]

B. L. Zhang, K. Raghavachari, �??Photoabsorption and photoluminescence of divalent defects in silicate and germanosilicate glasses: First-principles calculations,�?? Phys. Rev. B 55, R15993-R15996 (1997).
[CrossRef]

G. Pacchioni, I. Ieranò, �??Ab initio formation energies of point defects in pure and Ge-doped SiO2,�?? Phys. Rev. B 56, 7304-7312 (1997).
[CrossRef]

T. Uchino, M. Takahashi, K. Ichii, T. Yoko, �??Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,�?? Phys. Rev. B 65, 172202-1 (2002).
[CrossRef]

Other

M. Born, E. Wolf, �??The mean polarizability: the Lorentz-Lorenz formula,�?? in Principles of Optics, (Pergamon Press, Oxford, 1980), pp. 87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

UV absorption spectra of the film (a) after deposition and annealing; (b) irradiated with 1.08 kJ/cm2; (c) irradiated with 2.16 kJ/cm2 ; and (d) irradiated with 3.25 kJ/cm2.

Fig. 2.
Fig. 2.

UV laser-induced changes of the effective index at 1550 nm of a single mode waveguide for increasing values of the cumulative exposure dose. The inset shows the saturation behavior of the index change measured in another, nominally equal, waveguide.

Fig. 3.
Fig. 3.

Profilometer scan of the sample surface after the UV-exposure, using a metal wire as a simple mask. The step reveals the position assumed by the wire during the irradiation. The inset shows a 3D image of a 550 µm×180 µm area, where the masking effect of the wire appears evident.

Fig. 4.
Fig. 4.

Deflection of the guided light at 633 nm produced by a highly efficient photo-induced Bragg grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n n = ( n 2 + 2 ) · ( n 2 1 ) 6 · n 2 · ( Δ N N + Δ α α ) ,

Metrics