Abstract

Under degenerate resonator configuration and tightly focused pump beam in a linear-cavity solid-state laser, the spatial hole-burning effect can be suppressed. This laser can attain very high intensity in the gain medium due to shrinkage of its beam waist to match the pump beam and therefore most of its gain is depleted even by a standing wave. This was demonstrated by a simulation with spatial dependent rate equations and experiment results of a plano-concave Nd:YVO4 laser. The suppression effect was observed up to 20 times the pump threshold.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Evtuhov and A. E. Siegman, �??A �??twisted-mode�?? technique for obtaining axially uniform energy density in a laser cavity,�?? Appl. Opt. 4, 142-143 (1965).
    [CrossRef]
  2. K. Otsuka and K. Kubodera, �??Effects of Auger recombination process on laser dynamics,�?? IEEE J. Quantum Electron. QE-16, 538-541 (1980).
    [CrossRef]
  3. K. Otsuka, P. Mandel and E. A. Viktorov, �??Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high density pumping,�?? Phy. Rev. A, 56, 3226-3232 (1997).
    [CrossRef]
  4. L. Meilhac, G. Pauliat and G. Roosen, �??Determination of the energy diffusion and of the Auger upconversion constants in a Nd:YVO4 standing-wave laser,�?? Opt. Commun. 203, 341-347 (2002).
    [CrossRef]
  5. C. H. Chen, P. T. Tai, M. D. Wei, and W. F. Hsieh, �??Multibeam-waist modes in an end-pumped Nd:YVO4 laser,�?? J. Opt. Soc. Am. B 20, 1220-1226 (2003).
    [CrossRef]
  6. H. H. Wu and W. F. Hsieh, �??Observations of multipass transverse modes in an axially pumped solid-state laser with different fractionally degenerate resonator configurations,�?? J. Opt. Soc. Am. B 18, 7-12 (2001).
    [CrossRef]
  7. G. J. Kintz and T. Baer, �??single-frequency operation in solid-state laser materials with short absorption depths,�?? IEEE J. Quantum Electron. 26, 1457-1459 (1990).
    [CrossRef]
  8. Y. F. Chen, C. C. Liao and S. C. Wang, �??Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,�?? Appl. Phys. B 70, 487-490 (2000).
    [CrossRef]
  9. J. R. O�??Connor, �??Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,�?? Appl. Phys. Lett. 9, 407-409 (1966).
    [CrossRef]
  10. O. Guillot-Noel, V. Mehta, B. Viana, D. Gourier, M. Boukhris, and S. Jandl, �??Evidence of ferromagnetically coupled Nd3+ ion pairs in weakly doped Nd:LiYF4 and Nd:YVO4 crystals as revealed by high-resolution optical and EPR spectroscopies,�?? Phys. Rev. B, 61, 15338 (2000).
    [CrossRef]
  11. D. K. Sardar and R. M. Yow, �??Stark components of 4F3/2, 4I9/2 and 4I11/2 mainfold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,�?? Opt. Matter. 14, 5-11 (2000).
    [CrossRef]
  12. F. J. Manjon, S. Jandl, G. Riou, B. Ferrand, and K. Syassen, �??Effect of pressure on crystal-field transitions of Nd-doped YVO4,�?? Phys. Rev. B, 69, 165121 (2004).
    [CrossRef]
  13. P. T. Tai, C. H. Chen, and W. F. Hsieh, �??Direct generation of optical bottle beams from a tightly focused end-pumped solid-state laser,�?? Opt. Express 12, 5827-5833 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5827">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5827</a.>
    [CrossRef] [PubMed]
  14. C. H. Chen, P. T. Tai, and W. F. Hsieh, �??bottle beam from a bare laser for single-beam trapping,�?? Appl. Opt. 43, 6001-6006 (2004)
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

Y. F. Chen, C. C. Liao and S. C. Wang, �??Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,�?? Appl. Phys. B 70, 487-490 (2000).
[CrossRef]

Appl. Phys. Lett.

J. R. O�??Connor, �??Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,�?? Appl. Phys. Lett. 9, 407-409 (1966).
[CrossRef]

IEEE J. Quantum Electron.

K. Otsuka and K. Kubodera, �??Effects of Auger recombination process on laser dynamics,�?? IEEE J. Quantum Electron. QE-16, 538-541 (1980).
[CrossRef]

G. J. Kintz and T. Baer, �??single-frequency operation in solid-state laser materials with short absorption depths,�?? IEEE J. Quantum Electron. 26, 1457-1459 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

L. Meilhac, G. Pauliat and G. Roosen, �??Determination of the energy diffusion and of the Auger upconversion constants in a Nd:YVO4 standing-wave laser,�?? Opt. Commun. 203, 341-347 (2002).
[CrossRef]

Opt. Express

Opt. Matter.

D. K. Sardar and R. M. Yow, �??Stark components of 4F3/2, 4I9/2 and 4I11/2 mainfold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,�?? Opt. Matter. 14, 5-11 (2000).
[CrossRef]

Phy. Rev. A

K. Otsuka, P. Mandel and E. A. Viktorov, �??Breakup of cw multimode oscillations and low-frequency instability in a microchip solid-state laser by high density pumping,�?? Phy. Rev. A, 56, 3226-3232 (1997).
[CrossRef]

Phys. Rev. B

F. J. Manjon, S. Jandl, G. Riou, B. Ferrand, and K. Syassen, �??Effect of pressure on crystal-field transitions of Nd-doped YVO4,�?? Phys. Rev. B, 69, 165121 (2004).
[CrossRef]

O. Guillot-Noel, V. Mehta, B. Viana, D. Gourier, M. Boukhris, and S. Jandl, �??Evidence of ferromagnetically coupled Nd3+ ion pairs in weakly doped Nd:LiYF4 and Nd:YVO4 crystals as revealed by high-resolution optical and EPR spectroscopies,�?? Phys. Rev. B, 61, 15338 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Numerical spatial distribution of steady-state upper level density to show influence of spatial hole-burning effect. The normalized pumping γ (to the threshold) for both of the conventional laser operated at L=6.06cm (a) and bottle beam laser at g1g2=1/4 (b).

Fig. 2.
Fig. 2.

Single frequency optical spectrum of the Fabry-Perot interferometer with FSR=15 GHz when the pumping is set below 1.8 times threshold.

Fig. 3.
Fig. 3.

Typical multiple optical frequency and corresponding RF spectrum for the common laser at L=6.06cm. (a) The Fabry-Perot interferometer shows two longitudinal lasing modes with spacing of about 2.42 GHz and (b) the beat frequency of two longitudinal modes measured by the RF analyzer.

Fig. 4.
Fig. 4.

Multiple optical frequency and corresponding RF spectrum under 310mW pumping at g1g2=1/4. (a) The FPI spectrum shows mode spacing of about 58.6GHz but without longitudinal beating of 2.42 GHz or transverse mode beating in the RF spectrum in (b). An arrow points out the peak due to relaxation oscillation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ t N ( z ) = τ R ( z ) ( 1 + I ( z ) I s ) N ( z ) + τ D ( 2 N ( z ) z 2 ) A τ N 2 ( z ) ,
I ( z ) = 4 I 0 sin 2 ( k z ) ,
R ( z ) = P p h ν × π w p 2 × e α z α ,

Metrics