Abstract

We have investigated the effect of intracavity nonlinear dynamics arising from enhanced peak powers of femtosecond pulses inside broad-bandwidth, dispersion-controlled, high-finesse optical cavities. We find that for χ (3) nonlinearities, when a train of femtosecond pulses are maximally coupled into a cavity by active stabilization of its frequency comb to the corresponding linear resonances of a cavity, enhancement ceases when the peak nonlinear phase shift is sufficient to shift the cavity resonance frequencies by more than a cavity linewidth. In addition, we study and account for the complex spectral dynamics that result from chirping the input pulse and show excellent qualitative agreement with experimental results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Petrov, D. Georgiev, and U. Stamm, �??Improved Mode-Locking of a Femtosecond Titanium-Doped Sapphire Laser by Intracavity Second-Harmonic Generation,�?? Appl. Phys. Lett. 60, 1550�??1552 (1992).
    [CrossRef]
  2. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, �??Resonant optical second harmonic generation and mixing,�?? IEEE J. Quantum Electron. QE-2, 109�??123 (1966).
    [CrossRef]
  3. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, �??2nd-Harmonic Generation of a Continuous-Wave Diode-Pumped Nd-Yag Laser Using an Externally Resonant Cavity,�?? Opt. Lett. 12, 1014�??1016 (1987).
    [CrossRef] [PubMed]
  4. C. S. Adams and A. I. Ferguson, �??Frequency Doubling of a Single Frequency Ti-Al2o3 Laser Using an External Enhancement Cavity,�?? Opt. Commun. 79, 219�??223 (1990).
    [CrossRef]
  5. Z. Y. Ou and H. J. Kimble, �??Enhanced Conversion Efficiency for Harmonic-Generation with Double-Resonance,�?? Opt. Lett. 18, 1053�??1055 (1993).
    [CrossRef] [PubMed]
  6. K. Fiedler, S. Schiller, R. Paschotta, P. Kurz, and J. Mlynek, �??Highly Efficient Frequency-Doubling with a Doubly Resonant Monolithic Total-Internal-Reflection Ring-Resonator,�?? Opt. Lett. 18, 1786�??1788 (1993).
    [CrossRef] [PubMed]
  7. T. Heupel, M. Weitz, and T. W. Hansch, �??Phase-coherent light pulses for atom optics and interferometry,�?? Opt. Lett. 22, 1719�??1721 (1997).
    [CrossRef]
  8. A. Kastler, �??Atomes a l�??Interieur d�??un Interferometre Perot-Fabry,�?? Appl. Opt. 1, 17�??24 (1962).
    [CrossRef]
  9. J. Ye, L. S. Ma, and J. L. Hall, �??Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,�?? J. Opt. Soc. Am. B 15, 6�??15 (1998).
    [CrossRef]
  10. J. Ye and T. W. Lynn, �??Applications of optical cavities in modern atomic, molecular, and optical physics,�?? Advances in Atomic, Molecular, and Optical Physics 49, 1�??83 (2003).
    [CrossRef]
  11. R. J. Jones and J. Ye, �??Femtosecond pulse amplification by coherent addition in a passive optical cavity,�?? Opt. Lett. 27, 1848�??1850 (2002).
    [CrossRef]
  12. J. C. Petersen and A. N. Luiten, �??Short pulses in optical resonators,�?? Opt. Express 11, 2975�??2981 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975</a>.
    [CrossRef] [PubMed]
  13. R. J. Jones and J. C. Diels, �??Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,�?? Phys. Rev. Lett. 86, 3288�??3291 (2001).
    [CrossRef] [PubMed]
  14. R. J. Jones, I. Thomann, and J. Ye, �??Precision stabilization of femtosecond lasers to high-finesse optical cavities,�?? Phys. Rev. A 69, 051803 (R) (2004).
    [CrossRef]
  15. J. Ye and S. T. Cundiff (editors), Femtosecond optical frequency comb technology: Principle, operation and application (Springer, New York, 2005).
    [CrossRef]
  16. A. N. Luiten and J. C. Petersen, �??Ultrafast resonant polarization interferometry: Towards the first direct detection of vacuum polarization,�?? Phys. Rev. A 70, 033801 (2004).
    [CrossRef]
  17. R. J. Jones and J. Ye, �??High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity,�?? Opt. Lett. 29, 2812�??2814 (2004).
    [CrossRef] [PubMed]
  18. F. Ouellette and M. Piche, �??Ultrashort Pulse Reshaping with a Nonlinear Fabry-Perot Cavity Matched to a Train of Short Pulses,�?? J. Opt. Soc. Am. B 5, 1228�??1236 (1988).
    [CrossRef]
  19. M. J. Thorpe, R. J. Jones, K. D. Moll, and J. Ye, �??Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,�?? Opt. Express 13, 882�??888 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-882">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-882</a.>
    [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2002).
  21. P. Dube, L. S. Ma, J. Ye, P. Jungner, and J. L. Hall, �??Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,�?? J. Opt. Soc. Am. B 13, 2041�??2054 (1996).
    [CrossRef]

Advances in Atomic, Molecular, and Optic (1)

J. Ye and T. W. Lynn, �??Applications of optical cavities in modern atomic, molecular, and optical physics,�?? Advances in Atomic, Molecular, and Optical Physics 49, 1�??83 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Petrov, D. Georgiev, and U. Stamm, �??Improved Mode-Locking of a Femtosecond Titanium-Doped Sapphire Laser by Intracavity Second-Harmonic Generation,�?? Appl. Phys. Lett. 60, 1550�??1552 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, �??Resonant optical second harmonic generation and mixing,�?? IEEE J. Quantum Electron. QE-2, 109�??123 (1966).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

C. S. Adams and A. I. Ferguson, �??Frequency Doubling of a Single Frequency Ti-Al2o3 Laser Using an External Enhancement Cavity,�?? Opt. Commun. 79, 219�??223 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (2)

A. N. Luiten and J. C. Petersen, �??Ultrafast resonant polarization interferometry: Towards the first direct detection of vacuum polarization,�?? Phys. Rev. A 70, 033801 (2004).
[CrossRef]

R. J. Jones, I. Thomann, and J. Ye, �??Precision stabilization of femtosecond lasers to high-finesse optical cavities,�?? Phys. Rev. A 69, 051803 (R) (2004).
[CrossRef]

Phys. Rev. Lett. (2)

J. C. Petersen and A. N. Luiten, �??Short pulses in optical resonators,�?? Opt. Express 11, 2975�??2981 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975</a>.
[CrossRef] [PubMed]

R. J. Jones and J. C. Diels, �??Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,�?? Phys. Rev. Lett. 86, 3288�??3291 (2001).
[CrossRef] [PubMed]

Other (2)

J. Ye and S. T. Cundiff (editors), Femtosecond optical frequency comb technology: Principle, operation and application (Springer, New York, 2005).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the enhancement cavity being modeled. The cavity is composed of a 0.9% input coupler (IC), two negative dispersion mirrors (NGDD), a high reflector (HR), and two curved mirrors (CM) to focus the beam inside the nonlinear medium (χ (3)). (b) Numerically calculated free spectral range of the cavity versus wavelength.

Fig. 2.
Fig. 2.

Cavity pulse-energy enhancement as a function of input intensity and the associated nonlinear phase shift. Increased amplification can occur at higher input peak intensities if the comb is detuned from the linear cavity resonances.

Fig. 3.
Fig. 3.

Cavity buildup dynamics. A detuned comb (Comb 2) can temporarily grow to higher amplifications if another pulse (Comb 1) is already present in the cavity when compared to the absence of the first pulse (dotted line).

Fig. 4.
Fig. 4.

Effect of chirp on output spectrum. All simulated pulses start with the same input spectrum (a). Two transform limited pulses are shown in which the peak intensity (d) and the pulse energy (e) are the same as the chirped pulses (b) and (c). The fringe pattern in the output spectrum from experimental observations (f) show excellent qualitative agreement with equivalent simulated conditions (c). The observed energy enhancement is also indicated in each panel.

Metrics