Abstract

We studied coupling phenomena between surface plasmons and electromagnetic waves in the microwave spectrum using circular apertures surrounded by array of grooves. We first present experimental and theoretical results of enhanced microwave transmission though a subwavelength circular aperture with concentric periodic grooves around the surface plasmon resonance frequency. This is followed by transmission studies through circular annular apertures and circular annular apertures surrounded by concentric periodic grooves. We demonstrated that 145 fold enhancement factor could be obtained with a subwavelength circular annular aperture surrounded by concentric periodic grooves. Our results show that, high transmission from a circular annular aperture with grooves is assisted by the guided mode of the coaxial waveguide and coupling to the surface plasmons.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin 1988).
  2. Y. Teng, E. A. Stern, �??Plasma Radiation from Metal Grating Surfaces,�?? Phys. Rev. Lett. 19, 511-514 (1967).
    [CrossRef]
  3. T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, �??Giant optical transmission of sub-wavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature 39, 667-669 (1998).
    [CrossRef]
  5. U. Schröter and D. Heitmann, �??Surface-plasmon-enhanced transmission through metallic gratings,�?? Phys. Rev. B 58, 15419-21 (1999).
    [CrossRef]
  6. J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, �??Transmission Resonances on Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 83, 2845-48 (1999).
    [CrossRef]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, �??Beaming Light from a Subwavelength Aperture,�?? Science 297, 820-22 (2002).
    [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal,H. J. Lezec, T. W. Ebbesen and L. Martin-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  9. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098 (2004).
    [CrossRef]
  10. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Grating-coupled surface plasmons at microwave frequencies,�?? J. Appl. Phys. 86 (4), 1791 (1999).
    [CrossRef]
  11. E. Popov, M. Neviere, S. Enoch and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62, 16100-08 (2000).
    [CrossRef]
  12. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569-71 (2000).
    [CrossRef]
  13. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114-17 (2001).
    [CrossRef] [PubMed]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972 (2001).
    [CrossRef]
  15. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040 (2004).
    [CrossRef]
  16. F. I. Baida, D. Van Labeke, �??Light transmission by subwavelength annular aperture arrays in metallic films,�?? Opt. Comm. 209, 17-22 (2002).
    [CrossRef]
  17. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, A. Belkhir, �??Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,�?? Appl. Phys. B 79, 1-8 (2004).
    [CrossRef]
  18. F. I. Baida, D. Van Labeke, and B. Guzial, �??Enhanced confined light trasmission by single subwavelength apertures in metallic films,�?? Appl. Opt. 42 (34), 6811 (2003).
    [CrossRef] [PubMed]
  19. H. F. Ghaemi, Tineke Thio, and D. E. Grupp, T. W. Ebbesen, H. J. Lezec,�??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58, 6779 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, A. Belkhir, �??Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,�?? Appl. Phys. B 79, 1-8 (2004).
[CrossRef]

Appl. Phys. Lett.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040 (2004).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569-71 (2000).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098 (2004).
[CrossRef]

J. Appl. Phys.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Grating-coupled surface plasmons at microwave frequencies,�?? J. Appl. Phys. 86 (4), 1791 (1999).
[CrossRef]

Nanotechnology

T. Thio, H.J. Lezec, T.W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, �??Giant optical transmission of sub-wavelength apertures: physics and applications,�?? Nanotechnology 13, 429-432 (2002).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolf, �??Extraordinary optical transmission through subwavelength hole arrays,�?? Nature 39, 667-669 (1998).
[CrossRef]

Opt. Comm.

F. I. Baida, D. Van Labeke, �??Light transmission by subwavelength annular aperture arrays in metallic films,�?? Opt. Comm. 209, 17-22 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

H. F. Ghaemi, Tineke Thio, and D. E. Grupp, T. W. Ebbesen, H. J. Lezec,�??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58, 6779 (1998).
[CrossRef]

U. Schröter and D. Heitmann, �??Surface-plasmon-enhanced transmission through metallic gratings,�?? Phys. Rev. B 58, 15419-21 (1999).
[CrossRef]

E. Popov, M. Neviere, S. Enoch and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62, 16100-08 (2000).
[CrossRef]

Phys. Rev. Lett.

Y. Teng, E. A. Stern, �??Plasma Radiation from Metal Grating Surfaces,�?? Phys. Rev. Lett. 19, 511-514 (1967).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, �??Transmission Resonances on Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 83, 2845-48 (1999).
[CrossRef]

F. J. Garcia-Vidal,H. J. Lezec, T. W. Ebbesen and L. Martin-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114-17 (2001).
[CrossRef] [PubMed]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, �??Beaming Light from a Subwavelength Aperture,�?? Science 297, 820-22 (2002).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin 1988).

Supplementary Material (1)

» Media 1: GIF (509 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the four studied structures with t=8 mm, a=8 mm, p=16 mm, w=3.2 mm and top view of Sample 2.

Fig. 2.
Fig. 2.

Calculated and measured transmission results for a) Sample 1 and b) Sample 2.

Fig. 3.
Fig. 3.

a) Transmission results for Sample 1 and 2. b) Enhancement factor obtained with Sample 2.

Fig. 4.
Fig. 4.

Electric field distribution of Sample 3 at resonance frequency (13.2 GHz). Red indicates the maximum and blue refers to the minimum.

Fig. 5.
Fig. 5.

a) Calculated and measured transmission results for Sample 3. b) Transmission results for Sample 2 and 3.

Fig. 6.
Fig. 6.

a) Calculated and measured transmission results for Sample 4. b) Enhancement factor obtained with Sample 4.

Fig. 7.
Fig. 7.

Electric field distribution on the surface of Sample 4 at resonance frequency (12.9 GHz). Red indicates the maximum and blue indicates the minimum. Phase of the field changes by 5 degrees. (GIF-video file, 509 KB)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k s p = k 0 + N k g
k s p = k o ε m ε d ε m + ε d
k z 2 = 4 π 2 λ 2 4 π 2 λ c 2
λ c T E m , 1 = π ( a + b ) m

Metrics