Abstract

It is demonstrated that by using a multimode fiber Bragg grating, the oscillation wavelength of semiconductor lasers can be selected by adjusting the alignment between the laser diode and multimode fiber. Wavelength locking with high output power and narrow linewidth can be realized in both static and dynamic states.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. B. Schlager, M. J. Hackert, P. Pepeljugoski, and J. Gwinn, �??Measurements for enhanced bandwidth performance over 62.5-µm multimode fiber in short-wavelength local area networks,�?? J. Lightwave Technol. 21, 1276-1285 (2003).
    [CrossRef]
  2. L. B. Aronson, B. E. Lemoff, L. A. Buckman, and D. W. Dolfi, �??Low-cost multimode WDM for local area networks up to 10 Gb/s,�?? IEEE Photon. Technol. Lett. 14, 1489-1491 (1998).
    [CrossRef]
  3. H. Bissessur, C. Caraglia, B. Thedrez, J. -M. Rainsant, and I. Riant, �??Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks,�?? IEEE Photon. Technol. Lett. 11, 1304-306 (1999).
    [CrossRef]
  4. K. Hwanser, K. F. Voss, and A. D. Kersey, �??Novel fiber devices and sensors based on multimode fiber Bragg gratings,�?? Proc. SPIE 2360, 265-268 (1994).
    [CrossRef]
  5. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, �??Bragg grating in multimode and few-mode optical fibers,�?? J. Lightwave Technol. 18, 230-235 (2000).
    [CrossRef]
  6. T. Mizunami, T. Hamada, and T. Yamamoto, �??External-fiber-grating vertical-cavity surface-emitting lasers,�?? IEEE Photon. Technol. Lett. 12, 1558-1560 (2000).
    [CrossRef]
  7. H. -G. Yu, C. -Q. Xu, Y. Wang, J. Wojcik, Z. -L. Peng, and P. Mascher, �??External-cavity semiconductor laser with Bragg grating in multimode fiber,�?? IEEE Photon.Technol. Lett. 16, 2341-2343 (2004).
    [CrossRef]
  8. K. Y. Lau and A. Yariv, �??Direct modulation and active mode-locking of ultrahigh speed GaAlAs lasers at frequencies up to 18 GHz,�?? Appl. Phys. Lett. 46, 326-328 (1985).
    [CrossRef]
  9. R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, �??Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,�?? IEEE Photon. Tech. Lett. 5, 4-6 (1993).
    [CrossRef]
  10. Z. Ahmed and R. S. Tucker, �??Small-signal IM response of grating-terminated external cavity semiconductor lasers,�?? IEEE J. Sel. Quantum Electron. 1, 505-515 (1995).
    [CrossRef]

Appl. Phys. Lett.

K. Y. Lau and A. Yariv, �??Direct modulation and active mode-locking of ultrahigh speed GaAlAs lasers at frequencies up to 18 GHz,�?? Appl. Phys. Lett. 46, 326-328 (1985).
[CrossRef]

IEEE J. Sel. Quantum Electron.

Z. Ahmed and R. S. Tucker, �??Small-signal IM response of grating-terminated external cavity semiconductor lasers,�?? IEEE J. Sel. Quantum Electron. 1, 505-515 (1995).
[CrossRef]

IEEE Photon. Tech. Lett.

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, �??Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,�?? IEEE Photon. Tech. Lett. 5, 4-6 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Mizunami, T. Hamada, and T. Yamamoto, �??External-fiber-grating vertical-cavity surface-emitting lasers,�?? IEEE Photon. Technol. Lett. 12, 1558-1560 (2000).
[CrossRef]

L. B. Aronson, B. E. Lemoff, L. A. Buckman, and D. W. Dolfi, �??Low-cost multimode WDM for local area networks up to 10 Gb/s,�?? IEEE Photon. Technol. Lett. 14, 1489-1491 (1998).
[CrossRef]

H. Bissessur, C. Caraglia, B. Thedrez, J. -M. Rainsant, and I. Riant, �??Wavelength-versatile external fiber grating lasers for 2.5-Gb/s WDM networks,�?? IEEE Photon. Technol. Lett. 11, 1304-306 (1999).
[CrossRef]

IEEE Photon.Technol. Lett.

H. -G. Yu, C. -Q. Xu, Y. Wang, J. Wojcik, Z. -L. Peng, and P. Mascher, �??External-cavity semiconductor laser with Bragg grating in multimode fiber,�?? IEEE Photon.Technol. Lett. 16, 2341-2343 (2004).
[CrossRef]

J. Lightwave Technol.

Proc. SPIE

K. Hwanser, K. F. Voss, and A. D. Kersey, �??Novel fiber devices and sensors based on multimode fiber Bragg gratings,�?? Proc. SPIE 2360, 265-268 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Typical reflection spectra of MM-FBG with the highest reflection peak located at (a) P1, (b) P2, (c) P3.

Fig. 2.
Fig. 2.

Experimental setup of ECSL with MM-FBG.

Fig. 3.
Fig. 3.

Output spectra of ECSL with MM-FBG for wavelength locking at (a) P1 (1525.0 nm), (b) P2 (1523.5 nm), (c) P3 (1522.0 nm).

Fig. 4.
Fig. 4.

Specific wavelength locking regions for P1, P2 and P3.

Fig. 5.
Fig. 5.

L-I curves of ECSL with MM-FBG and SM-FBG, respectively.

Fig. 6.
Fig. 6.

Frequency response curves of ECSL with MM-FBG at a bias current of 30 mA and a peak-to-peak modulation current of 10 mA.

Fig. 7.
Fig. 7.

Output spectra of ECSL with a strong MM-FBG as the oscillation wavelength is locked at (a) P4 (1520.5 nm), (b) P5 (1519.0 nm), (c) P6 (1517.5 nm), and (d) P7 (1515.0 nm).

Metrics