Abstract

An InGaAsP-InP optical switch geometry based on electrical control of waveguide-resonator coupling is demonstrated. Thermooptic tuning of a Mach-Zehnder interferometer integrated with a racetrack resonator is shown to result in switching with ON-OFF contrast up to 18.5 dB. The optical characteristics of this unique design enable a substantial reduction of the switching power, to a value of 26 mW in comparison with 40 mW for a conventional Mach-Zehnder interferometer switch. Modulation response measurements reveal a 3 dB bandwidth of 400 kHz and a rise time of 1.8 µs, comparing favorably with current state-of-the-art thermooptic switches.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, �??Compact microring notch filters,�?? IEEE Photon. Technol. Lett. 12, 398�??400 (2000).
    [CrossRef]
  2. B. E. Little, S. T. Chu, and H. A. Haus, �??Track changing by use of the phase response of microspheres and resonators,�?? Opt. Lett. 23, 894�??896 (1998).
    [CrossRef]
  3. J. E. Heebner and R. W. Boyd, �??Enhanced all-optical switching by use of a nonlinear fiber ring resonator,�?? Opt. Lett. 24, 847�??849 (1999).
    [CrossRef]
  4. R. W. Boyd and J. E. Heebner, �??Sensitive disk resonator photonic biosensor,�?? Appl. Opt. 40, 5742�??5747 (2001).
    [CrossRef]
  5. S. Blair and Y. Chen, �??Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,�?? Appl. Opt. 40, 570�??582 (2001).
    [CrossRef]
  6. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, �??A fast low-power optical memory based on coupled micro-ring lasers,�?? Nature 432, 206�??209 (2004).
    [CrossRef] [PubMed]
  7. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, �??All-optical switching in a laterally coupled microring resonator by carrier injection,�?? IEEE Photon. Technol. Lett. 15, 36�??38 (2003).
    [CrossRef]
  8. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, �??Ultralow-threshold microcavity Raman laser on a microelectronic chip,�?? Opt. Lett. 29, 1224�??1226 (2004).
    [CrossRef] [PubMed]
  9. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, �??Very high-order microring resonator filters for WDM applications,�?? IEEE Photon. Technol. Lett. 16, 2263�??2265 (2004).
    [CrossRef]
  10. A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photon. Technol. Lett. 14, 483�??485 (2002).
    [CrossRef]
  11. A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321�??322 (2000).
    [CrossRef]
  12. A. Yariv, in Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).
  13. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, �??Fast and low-power thermooptic switch on thin silicon-on-insulator,�?? IEEE Photon. Technol. Lett. 15, 1366�??1368 (2003).
    [CrossRef]
  14. C. H. Lee, P. S. Mak, and A. P. DeFonzo, �??Optical control of millimeter-wave propagation in dielectric waveguides,�?? IEEE J. Quantum Electron. 16, 277�??288 (1980).
    [CrossRef]
  15. L. B. Soldano and E. C. M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615�??627 (1995).
    [CrossRef]
  16. W. M. J. Green, J. Scheuer, G. A. DeRose, A. Yariv, and A. Scherer, �??Assessment of lithographic process variation effects in InGaAsP annular Bragg resonator lasers,�?? J. Vac. Sci. Technol. B 22, 3206�??3209 (2004).
    [CrossRef]
  17. L. A. Coldren and S.W. Corzine, in Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publications, New York, 1995).
  18. J. M. Choi, R. K. Lee, and A. Yariv, �??Ring fiber resonators based on fused-fiber grating add-drop filters: application to resonator coupling,�?? Opt. Lett. 27, 1598�??1600 (2002).
    [CrossRef]

Appl. Opt.

Electron. Lett.

A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321�??322 (2000).
[CrossRef]

IEEE J. Quantum Electron.

C. H. Lee, P. S. Mak, and A. P. DeFonzo, �??Optical control of millimeter-wave propagation in dielectric waveguides,�?? IEEE J. Quantum Electron. 16, 277�??288 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, �??Fast and low-power thermooptic switch on thin silicon-on-insulator,�?? IEEE Photon. Technol. Lett. 15, 1366�??1368 (2003).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, �??Compact microring notch filters,�?? IEEE Photon. Technol. Lett. 12, 398�??400 (2000).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, �??All-optical switching in a laterally coupled microring resonator by carrier injection,�?? IEEE Photon. Technol. Lett. 15, 36�??38 (2003).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, �??Very high-order microring resonator filters for WDM applications,�?? IEEE Photon. Technol. Lett. 16, 2263�??2265 (2004).
[CrossRef]

A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photon. Technol. Lett. 14, 483�??485 (2002).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615�??627 (1995).
[CrossRef]

J. Vac. Sci. Technol. B

W. M. J. Green, J. Scheuer, G. A. DeRose, A. Yariv, and A. Scherer, �??Assessment of lithographic process variation effects in InGaAsP annular Bragg resonator lasers,�?? J. Vac. Sci. Technol. B 22, 3206�??3209 (2004).
[CrossRef]

Nature

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, �??A fast low-power optical memory based on coupled micro-ring lasers,�?? Nature 432, 206�??209 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Other

A. Yariv, in Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).

L. A. Coldren and S.W. Corzine, in Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publications, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Hybrid MZI/racetrack resonator switch schematic drawings. (a) Illustration of relevant electric field components and relative phase between arms of MZI. (b) Illustration of the device geometry as fabricated (not to scale). The planar fabrication process utilized requires that the output waveguides of the MZI be uncrossed, in contrast to the crossed configuration shown in (a).

Fig. 2.
Fig. 2.

Comparison of the on-resonance normalized transmission through the hybrid MZI/racetrack resonator switch with α=0.99, with the transmission through a conventional MZI. The hybrid device switches ON-OFF with a fraction of the π phase shift required for the conventional MZI.

Fig. 3.
Fig. 3.

Normalized transmission illustrating the behavior of a single racetrack resonance as the MZI is tuned. The electrical power dissipated in a single MZI electrode appears in the legend. (a) TE polarized input, maximum contrast ~12 dB, switching power ~26 mW. (b) TM polarized input, maximum contrast ~18.5 dB, switching power ~29 mW.

Fig. 4.
Fig. 4.

Normalized transmission as a function of differential electrical power, for TE-polarized input. Square-marker data and dash-dotted guide-line represent on-resonance transmission. Circle-marker data and dashed guide-line indicate off-resonance transmission. Guide-lines are theoretical plots for α=0.50 and ΔPπ =39 mW.

Fig. 5.
Fig. 5.

(a) Frequency domain modulation response, showing 3 dB small-signal bandwidth of 400 kHz. (b) Temporal response of normalized optical transmission to a 10 µs voltage pulse, showing a rise/fall time of ~1.8 µs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 b 2 ] = [ t κ κ * t * ] [ a 1 a 2 ] = i [ cos ( Δ ϕ 2 ) sin ( Δ ϕ 2 ) sin ( Δ ϕ 2 ) cos ( Δ ϕ 2 ) ] [ a 1 a 2 ]
a 2 = α e i θ b 2
P out P in = b 1 a 1 2 = α 2 + cos 2 ( Δ ϕ 2 ) 2 α cos ( Δ ϕ 2 ) cos ( θ ) 1 + α 2 cos 2 ( Δ ϕ 2 ) 2 α cos ( Δ ϕ 2 ) cos ( θ )
P out P in = b 1 a 1 2 = [ α cos ( Δ ϕ 2 ) ] 2 [ 1 α cos ( Δ ϕ 2 ) ] 2 .
Δ ϕ = π Δ P π Δ P e
Δ P c r Δ P π = 2 cos 1 ( α ) π
Δ ϕ = 2 π L e λ d n e f f d T Δ T = 2 π L e λ d n e f f d T Z T Δ P e ,

Metrics