Abstract

LDS dyes were doped into zirconia-organically modified silicate (ORMOSIL) materials prepared by low temperature sol-gel technique. Embedded channel waveguides were fabricated using wet etching of glass substrates followed by deposition of the LDS 925-doped zirconia-ORMOSIL in the channel. Near infrared distributed feedback (DFB) laser action was induced in the LDS 925-doped sol-gel channel waveguide. Narrow line-width (<0.5 nm) tuning of the output wavelength was achieved by varying the period of the gain modulation generated by a nanosecond neodymium:YAG laser at 532 nm. Tuning range was from 787 nm to 933 nm. The dispersion behavior of the laser output was checked by comparing experiments with the predictions of Marcatili’s theory. Additionally, near infrared (NIR) wide-band tuning and high-order DFB lasing operation were realized in LDS dye-doped planar waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
    [CrossRef]
  2. G. C. Righini and S. Pelli, “Sol-gel glass waveguides,” J. Sol-Gel Sci. Technol. 8, 991 (1997).
    [CrossRef]
  3. Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
    [CrossRef]
  4. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152 (1971).
    [CrossRef]
  5. V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
    [CrossRef]
  6. T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
    [CrossRef]
  7. Y. Oki, S. Miyamoto, M. Maeda, and N. Nasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220 (2002).
    [CrossRef]
  8. G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
    [CrossRef]
  9. G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
    [CrossRef]
  10. X.-L. Zhu and D. Lo, “Distributed-feedback sol-gel dye laser tunable in the near ultraviolet,” Appl. Phys. Lett. 77, 2647 (2000).
    [CrossRef]
  11. X.-L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917 (2002).
    [CrossRef]
  12. D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
    [CrossRef]
  13. C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
    [CrossRef]
  14. M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
    [CrossRef]
  15. F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
    [CrossRef]
  16. K. Kato, “Ar-Ion-Laser-Pumped Infrared Dye Laser at 875–1084nm,” Opt. Lett. 9(12), 544 (1984).
    [CrossRef] [PubMed]
  17. M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
    [CrossRef]
  18. P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
    [CrossRef]
  19. J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
    [CrossRef]
  20. K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).
  21. K.D. Bonin and T.J. Mcllrath, “Dye Laser Radiation in the 605–725nm Region Pumped by a 544nm Fluorescein Dye Laser,” Appl. Opt. 23(17), 2854 (1984).
    [CrossRef] [PubMed]
  22. M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater. 8, 37 (1997).
    [CrossRef]
  23. Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
    [CrossRef]
  24. Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
    [CrossRef]
  25. T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
    [CrossRef]
  26. L.Y. Chen, X.-W. Feng, Y. Su, H.-Z. Ma, and Y.-H. Qian, “Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer,” Appl. Opt. 33, 1299 (1994).
    [CrossRef] [PubMed]
  27. C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
    [CrossRef]
  28. G. Wang and F. Gan, “Optical parameters and absorption studies of azo dye-doped polymer thin films on silicon,” Mater. Lett. 43, 6 (2000).
    [CrossRef]
  29. J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
    [CrossRef] [PubMed]
  30. C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 8.
  31. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).
  32. J.E. Bjorkholm and C.V. Shank, “Higher-Order Distributed Feedback Oscillators,” Appl. Phys. Lett. 20, 306 (1972).
    [CrossRef]
  33. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
    [CrossRef]
  34. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
    [CrossRef]

2004 (3)

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

2003 (3)

J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
[CrossRef] [PubMed]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

2002 (6)

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

X.-L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917 (2002).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Maeda, and N. Nasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220 (2002).
[CrossRef]

2001 (3)

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
[CrossRef]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

2000 (4)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

G. Wang and F. Gan, “Optical parameters and absorption studies of azo dye-doped polymer thin films on silicon,” Mater. Lett. 43, 6 (2000).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

X.-L. Zhu and D. Lo, “Distributed-feedback sol-gel dye laser tunable in the near ultraviolet,” Appl. Phys. Lett. 77, 2647 (2000).
[CrossRef]

1997 (3)

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

G. C. Righini and S. Pelli, “Sol-gel glass waveguides,” J. Sol-Gel Sci. Technol. 8, 991 (1997).
[CrossRef]

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater. 8, 37 (1997).
[CrossRef]

1995 (1)

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

1994 (1)

1990 (1)

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

1984 (3)

1983 (1)

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

1982 (1)

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

1972 (1)

J.E. Bjorkholm and C.V. Shank, “Higher-Order Distributed Feedback Oscillators,” Appl. Phys. Lett. 20, 306 (1972).
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

1969 (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).

Akazaki, M.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Aso, K.

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Bado, P.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Barnes, W.L.

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

Benatsou, M.

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

Berleb, S.

Bjorkholm, J.E.

J.E. Bjorkholm and C.V. Shank, “Higher-Order Distributed Feedback Oscillators,” Appl. Phys. Lett. 20, 306 (1972).
[CrossRef]

Blau, W.J.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Boggy, R.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Bonin, K.D.

Bouazaoui, M.

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

Bowen, J.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Broyer, M.

M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
[CrossRef]

Brütting, W.

Capoen, B.

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

Casalboni, M.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Chen, F.

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

Chen, L.Y.

Chevaleyre, J.

M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
[CrossRef]

De Matteis, F.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Delacretaz, G.

M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
[CrossRef]

Denis, C.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Dumarcher, V.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Dupuy, C.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Feldmann, J.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Feng, X.-W.

Finkelstein, I.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

Fiorini, C.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Gan, F.

G. Wang and F. Gan, “Optical parameters and absorption studies of azo dye-doped polymer thin films on silicon,” Mater. Lett. 43, 6 (2000).
[CrossRef]

Gindre, D.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Gombert, A.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Hoffnagle, J.

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

Horhold, H.H.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Jordan, G.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Kaino, T.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Kato, K.

Kobayashi, T.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Kranzelbinder, G.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Krauss, T.F.

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

Lemmer, U.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

List, E.W.J.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Lo, D.

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
[CrossRef] [PubMed]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

X.-L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917 (2002).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

X.-L. Zhu and D. Lo, “Distributed-feedback sol-gel dye laser tunable in the near ultraviolet,” Appl. Phys. Lett. 77, 2647 (2000).
[CrossRef]

Ma, H.-Z.

Maeda, M.

Y. Oki, S. Miyamoto, M. Maeda, and N. Nasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).

Matsutani, K.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Mcllrath, T.J.

Merlo, V.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Miyamoto, S.

Y. Oki, S. Miyamoto, M. Maeda, and N. Nasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

Mückl, A. G.

Muraoka, K.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Nasa, N.

Nunzi, J.M.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Okada, T.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Oki, Y.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Maeda, and N. Nasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220 (2002).
[CrossRef]

Pelli, S.

G. C. Righini and S. Pelli, “Sol-gel glass waveguides,” J. Sol-Gel Sci. Technol. 8, 991 (1997).
[CrossRef]

Pogantsch, A.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Pollack, C. R.

C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 8.

Prosposito, P.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Qian, Y.-H.

Reisfeld, R.

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater. 8, 37 (1997).
[CrossRef]

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

Riechel, S.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Righini, G. C.

G. C. Righini and S. Pelli, “Sol-gel glass waveguides,” J. Sol-Gel Sci. Technol. 8, 991 (1997).
[CrossRef]

Rocha, L.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Roesch, L. Ph.

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

Ruschin, S.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

Russo, R.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Sahraoui, B.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Samuel, I.D.W.

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

Savatier, J.B.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Schade, W.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
[CrossRef]

Scheel, D.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
[CrossRef]

Scherf, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Schlumpf, N.

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

Schutzmann, S.

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Shank, C.V.

J.E. Bjorkholm and C.V. Shank, “Higher-Order Distributed Feedback Oscillators,” Appl. Phys. Lett. 20, 306 (1972).
[CrossRef]

Shi, L.

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
[CrossRef] [PubMed]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

Shinpoh, A.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Sobel, F.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Sorek, Y.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

Su, Y.

Suzuki, Y.

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

Tanaka, M.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

Tchana, W.

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

Tillman, H.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Tousssaere, E.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

Turnbull, G.A.

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

Uchiumi, M.

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Vasa, N.J.

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Vilcot, J. P.

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

Voss, T.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
[CrossRef]

Wang, G.

G. Wang and F. Gan, “Optical parameters and absorption studies of azo dye-doped polymer thin films on silicon,” Mater. Lett. 43, 6 (2000).
[CrossRef]

Wang, J.

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
[CrossRef] [PubMed]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

Weis, A.

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

Westra, S.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Wilson, K.R.

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

Wittwer, V.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26, 593 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Wöste, L.

M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
[CrossRef]

Ye, C.

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

Zevin, M.

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater. 8, 37 (1997).
[CrossRef]

Zhang, G.

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

Zhang, G.-X.

Zhu, X.-L.

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, “Tunable multiwavelength distributed-feedback zirconia waveguide lasers,” Opt. Lett. 28, 90 (2003).
[CrossRef] [PubMed]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

X.-L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917 (2002).
[CrossRef]

X.-L. Zhu and D. Lo, “Distributed-feedback sol-gel dye laser tunable in the near ultraviolet,” Appl. Phys. Lett. 77, 2647 (2000).
[CrossRef]

Zuo, D.

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Zyss, J.

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

App. Phys. B (1)

M. Broyer, J. Chevaleyre, G. Delacretaz, and L. Wöste, “CVL-Pumped Dye Laser For Spectroscopic Application,” App. Phys. B 35, 31 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189 (2004).
[CrossRef]

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73, 105 (2001).
[CrossRef]

Appl. Phys. Lett. (13)

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, “Light amplification in a dye-doped glass planar waveguide,” Appl. Phys. Lett. 66, 1169 (1995).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

G. Kranzelbinder, E. Tousssaere, J. Zyss, A. Pogantsch, E.W.J. List, H. Tillman, and H.H. Horhold, “Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene),” Appl. Phys. Lett. 80, 716 (2002).
[CrossRef]

X.-L. Zhu and D. Lo, “Distributed-feedback sol-gel dye laser tunable in the near ultraviolet,” Appl. Phys. Lett. 77, 2647 (2000).
[CrossRef]

X.-L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917 (2002).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. Zhang, and X.-L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707 (2002).
[CrossRef]

C. Ye, L. Shi, J. Wang, D. Lo, and X.-L. Zhu, “Simultaneous generation of multiple pairs of transverse electric and transverse magnetic output modes from titania zirconia organically modified silicate distributed feedback waveguide lasers,” Appl. Phys. Lett. 83, 4101 (2003).
[CrossRef]

M. Casalboni, F. De Matteis, V. Merlo, P. Prosposito, R. Russo, and S. Schutzmann, “1.3 µm light amplification in dye-doped hybrid sol-gel channel waveguides,” Appl. Phys. Lett. 83, 416 (2003).
[CrossRef]

F. Chen, J. Wang, C. Ye, D. Lo, and X.-L. Zhu, “Distributed feedback sol-gel zirconia channel waveguide lasers,” Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

M. Benatsou, B. Capoen, M. Bouazaoui, W. Tchana, and J. P. Vilcot, “Preparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides,” Appl. Phys. Lett. 71, 428 (1997).
[CrossRef]

T. Kobayashi, J.B. Savatier, G. Jordan, W.J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185 (2004).
[CrossRef]

J.E. Bjorkholm and C.V. Shank, “Higher-Order Distributed Feedback Oscillators,” Appl. Phys. Lett. 20, 306 (1972).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).

J. Opt. A: Pure Appl. Opt. (1)

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, “Polymer thin-film distributed feedback tunable lasers,” J. Opt. A: Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

G. C. Righini and S. Pelli, “Sol-gel glass waveguides,” J. Sol-Gel Sci. Technol. 8, 991 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Oki, K. Aso, D. Zuo, N.J. Vasa, and M. Maeda, “Wide-wavelength-range operation of a distributed-feedback dye laser with a plastic waveguide,” Jpn. J. Appl. Phys. 41, 6370 (2002).
[CrossRef]

Mater. Lett. (1)

G. Wang and F. Gan, “Optical parameters and absorption studies of azo dye-doped polymer thin films on silicon,” Mater. Lett. 43, 6 (2000).
[CrossRef]

Opt. Commun. (3)

Y. Oki, S. Miyamoto, M. Tanaka, D. Zuo, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers” Opt. Commun. 214, 277 (2002).
[CrossRef]

P. Bado, C. Dupuy, K.R. Wilson, R. Boggy, J. Bowen, and S. Westra, “High Efficiency Picosecond Pulse Generation in the 675–930nm Region from a Dye Laser Synchronously Pumped by an Argon-Ion Laser,” Opt. Commun. 46(3, 4), 241 (1983).
[CrossRef]

J. Hoffnagle, L. Ph. Roesch, N. Schlumpf, and A. Weis, “Cw Operation of Laser Dyes Styryl-9 and Styryl-11,” Opt. Commun. 42, 267 (1982).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. (1)

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater. 8, 37 (1997).
[CrossRef]

Oyo Butsuri. (1)

K. Matsutani, A. Shinpoh, M. Uchiumi, T. Okada, M. Maeda, K. Muraoka, and M. Akazaki, “Laser Action in New Styryl Dyes and Their Tuning Characteristics,” Oyo Butsuri. 59(8), 1089 (1990).

Synth. Met. (1)

G.A. Turnbull, T.F. Krauss, W.L. Barnes, and I.D.W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757 (2001).
[CrossRef]

Other (1)

C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microscope images of a 30-µm-wide channel waveguide in glass (b) and its cross-section (a).

Fig. 2.
Fig. 2.

Variation of n (refractive index) (a) and k (extinction coefficient) (b) from 400 nm to 1200 nm taken at 10-nm interval.

Fig. 3.
Fig. 3.

Absorption, fluorescence and amplified spontaneous emission spectra for an LDS 925-doped zirconia-ORMOSIL waveguide.

Fig. 4.
Fig. 4.

DFB waveguide laser tuning data (a) and output spectrum (b) for a 30-µm-wide, 4-µm-deep channel waveguide. The dye concentration was 0.005 M.

Fig. 5.
Fig. 5.

DFB laser output wavelength for channels of various width and a depth of 1.8 µm. The solid line is prediction based on Marcatili’s theory.

Fig. 6.
Fig. 6.

(a) Wavelength tuning of first-, second- and third-order DFB lasing of LDS 925-doped zirconia-ORMOSIL waveguide laser. (b) NIR wide-band wavelength tuning vs theoretical fit for LDS dye-doped zirconia-ORMOSIL waveguide laser.

Metrics