Abstract

We report near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. The broadband emission covers 1.3µm window in optical telecommunication systems. And it possesses wide full width at half maximum (FWHM) of ~200nm and long lifetime as long as 350µs. The luminescent properties are quite sensitive to glass compositions and excitation wavelengths. Based on energy matching conditions, we suggest that the infrared emission may be ascribed to 3P13P0 transition of Bi+. The broad infrared emission characteristics of this material indicate that it might be a promising candidate for broadband optical fiber amplifiers and tunable lasers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Blasse and A. Bril, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968)
    [CrossRef]
  2. M. J. Weber and R. R. Monchamp, �??Luminescence of Bi4Ge3O12: spectral and decay properties,�?? J. Appl. Phys. 44, 5495-5499 (1973)
    [CrossRef]
  3. R. B. Lauer, �??Photoluminescence in Bi12SiO20 and Bi12GeO20,�?? Appl. Phys. Lett. 17, 178-179 (1970)
    [CrossRef]
  4. G. Blasse, �??Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),�?? J. Phys. Chem. Solids 55, 171-174 (1994)
    [CrossRef]
  5. A. M. Strivastava, �??Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),�?? J. Lumin. 78, 239-243 (1998)
    [CrossRef]
  6. S. Parke and R. S. Webb, �??The optical properties of thallium, lead and bismuth in oxide glasses,�?? J. Phys. Chem. Solids 34, 85-95 (1973)
    [CrossRef]
  7. G. Blasse and A. Bril, �??Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,�?? J. Chem. Phys. 47, 1920-1926 (1967)
    [CrossRef]
  8. M. Wang, X. Fan and G. Xiong, �??Luminescence of Bi3+ ions and energy transfer from Bi3+ ions to Eu3+ ions in silica glasses repared by the sol-gel process,�?? J. Phys. Chem. Solids 56, 859 (1995)
    [CrossRef]
  9. C. H. Kim, H. L. Park and S. Mho, �??Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,�?? Solid State Commun. 101, 109 (1997)
    [CrossRef]
  10. Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-L281 (2001)
    [CrossRef]
  11. Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003)
    [CrossRef]
  12. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang and C. Zhu, �??Bismuth- and aluminum co-doped germanium oxide glasses for super-broadband optical amplification,�?? Opt. Lett. 29, 1998-2000 (2004)
    [CrossRef] [PubMed]
  13. X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Infrared broadband emission of bismuth-doped borosilicate glasses.�??
  14. X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Effect of sodium oxide on infrared broadband emission of bismuth-doped borosilicate glasses.�??
  15. K. Nagasawa, Y. Hoshi and Y. Ohki, �??Effect of Oxygen Content on Defect Formation in Pure-Silica Core Fibers,�?? Jpn. J. Appl. Phys. 26, L554-L557 (1987)
    [CrossRef]
  16. A. Diaz, Douglas. A. Keszler, �??Red, green, and blue Eu2+ luminescence in solid-state borates: A structure-property relationship,�?? Mater. Res. Bull. 31, 147-151 (1996)
    [CrossRef]
  17. G. Blasse, Luminescence of Inorganic Solids (Academy, New York, 1978), 463
  18. M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406-410, 465-469
  19. J. A. Duffy, �??Redox equilibria of glass,�?? J. Non-Cryst. Solids 196, 45-50 (1996)
    [CrossRef]

App. Phys. Lett. (1)

Y. Fujimoto and M. Nakatsuka, �??Optical amplification in bismuth-doped silica glass,�?? App. Phys. Lett. 82, 3325-3326 (2003)
[CrossRef]

Appl. Phys. Lett. (1)

R. B. Lauer, �??Photoluminescence in Bi12SiO20 and Bi12GeO20,�?? Appl. Phys. Lett. 17, 178-179 (1970)
[CrossRef]

Glass Science and Technology Series (1)

M. B. Volf, Chemical approach to glass, Vol. 7 of Glass Science and Technology Series (Elsevier, New York, 1984) 406-410, 465-469

J. Appl. Phys. (1)

M. J. Weber and R. R. Monchamp, �??Luminescence of Bi4Ge3O12: spectral and decay properties,�?? J. Appl. Phys. 44, 5495-5499 (1973)
[CrossRef]

J. Chem. Phys. (2)

G. Blasse and A. Bril, �??Investigations on Bi3+-activated phosphors,�?? J. Chem. Phys. 48, 217-222 (1968)
[CrossRef]

G. Blasse and A. Bril, �??Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,�?? J. Chem. Phys. 47, 1920-1926 (1967)
[CrossRef]

J. Lumin. (1)

A. M. Strivastava, �??Luminescence of divalent bismuth in M2+BPO5 (M2+=Ba2+, Sr2+ and Ca2+),�?? J. Lumin. 78, 239-243 (1998)
[CrossRef]

J. Non-Cryst. Solids (1)

J. A. Duffy, �??Redox equilibria of glass,�?? J. Non-Cryst. Solids 196, 45-50 (1996)
[CrossRef]

J. Phys. Chem. Solids (3)

S. Parke and R. S. Webb, �??The optical properties of thallium, lead and bismuth in oxide glasses,�?? J. Phys. Chem. Solids 34, 85-95 (1973)
[CrossRef]

M. Wang, X. Fan and G. Xiong, �??Luminescence of Bi3+ ions and energy transfer from Bi3+ ions to Eu3+ ions in silica glasses repared by the sol-gel process,�?? J. Phys. Chem. Solids 56, 859 (1995)
[CrossRef]

G. Blasse, �??Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi),�?? J. Phys. Chem. Solids 55, 171-174 (1994)
[CrossRef]

Jpn. J. App. Phys. (1)

Y. Fujimoto and M. Nakatsuka, �??Infrared luminescence from bismuth-doped silica glass,�?? Jpn. J. App. Phys. 40, L279-L281 (2001)
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Nagasawa, Y. Hoshi and Y. Ohki, �??Effect of Oxygen Content on Defect Formation in Pure-Silica Core Fibers,�?? Jpn. J. Appl. Phys. 26, L554-L557 (1987)
[CrossRef]

Mater. Res. Bull. (1)

A. Diaz, Douglas. A. Keszler, �??Red, green, and blue Eu2+ luminescence in solid-state borates: A structure-property relationship,�?? Mater. Res. Bull. 31, 147-151 (1996)
[CrossRef]

Opt. Lett. (1)

Solid State Commun. (1)

C. H. Kim, H. L. Park and S. Mho, �??Photoluminescence of Eu3+ and Bi3+ in Na3YSi3O9,�?? Solid State Commun. 101, 109 (1997)
[CrossRef]

Other (3)

X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Infrared broadband emission of bismuth-doped borosilicate glasses.�??

X. Meng, Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Graduate School of Chinese Academy of sciences and Japan Science and Technology Agency, Shanghai 201800, China, and M. Peng, J. Qiu, D. Chen, X. Jiang and C. Zhu are preparing a manuscript to be called �??Effect of sodium oxide on infrared broadband emission of bismuth-doped borosilicate glasses.�??

G. Blasse, Luminescence of Inorganic Solids (Academy, New York, 1978), 463

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Absorption spectra of (95-x)B2O3-xBaO-5Al2O3-2Bi2O3 (in mol%, x=20, 25, 30, 35, 40)

Fig. 2.
Fig. 2.

Fluorescence spectra of (95-x)B2O3-xBaO-5Al2O3-2Bi2O3 (in mol%, x=20, 25, 30, 35, 40) when excited by 808nm LD

Fig. 3.
Fig. 3.

Peak position and FWHM of the fluorescence of (95-x)B2O3-xBaO-5Al2O3-2Bi2O3 (in mol%, x=20, 25, 30, 35, 40), λ ex=808nm.

Fig. 4.
Fig. 4.

Integrated intensity and lifetime of the fluorescence of (95-x)B2O3-xBaO-5Al2O3-2Bi2O3 (in mol%, x=20, 25, 30, 35, 40), λ ex=808nm.

Fig. 5.
Fig. 5.

Integrated intensity and FWHM of the 1272nm fluorescence of bismuth-doped 70B2O3-25BaO-5Al2O3 glasses as a function of Bi2O3 concentration (mol%), λ ex=808nm.

Fig. 6.
Fig. 6.

The lifetime of the 1272nm fluorescence of bismuth-doped 70B2O3-25BaO-5Al2O3 glass as a function of Bi2O3 concentration (mol%), λ ex=808nm.

Fig. 7.
Fig. 7.

The fluorescence spectra of 75B2O3-20BaO-5Al2O3-2Bi2O3, the excitation wavelengths are 532nm Nd:YAG laser and 808nm LD excitation.

Fig. 8.
Fig. 8.

Energy level diagram for Bi+, which is proposed based on energy matching conditions (NIR: near infrared emission).

Metrics