Abstract

We describe the architecture, fabrication, and electro-optical characteristics of a two-dimensional (2D), periodic, highly ordered array of subwavelength scale organic light-emitting diodes (OLEDs). A 2D nanohole array template was introduced onto a patterned ITO glass substrate by two-step irradiated hologram lithography and reactive ion etching, and then a 2D nanohole OLED array was prepared by following typical OLED fabrication procedures. Our analysis of the electro-optical characteristics of this device showed that shrinking the OLEDs to sub-wavelength scale has only a minimal effect on their optical properties. We also used the Bragg scattering effect to confirm the compounding of the millions of ~220 nm OLED light sources to form 2D periodic nanohole emission by comparing the angular dependence of the emission spectrum of the OLED array with that of a conventional OLED.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic Crystals: Putting a New Twist on Light,�?? Nature 386, 143-149 (1997).
  2. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, �??Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,�?? Appl. Phys. Lett. 75, 1036-1038 (1999).
    [CrossRef]
  3. H.-Y. Ryu, Y.-H. Lee, R. L. Sellin, and D. Bimberg, �??Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,�?? Appl. Phys. Lett. 79, 3573-3575 (2001).
    [CrossRef]
  4. J.-K. Hwang, H.-Y. Ryu, Y.-J. Lee, and Y.-H. Lee, "Enhancement of light extraction from two-dimensional photonic crystal slab structures," IEEE J. Selected Topics in Quantum Electronics 8, 231-237 (2002).
    [CrossRef]
  5. Y. R. Do, Y. C. Kim, Y.-W. Song, C.-O Cho, H. Jeon, Y.-J. Lee, S.-H. Kim, and Y.-H. Lee, �??Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,�?? Adv. Mater. 15, 1214-1218 (2003).
    [CrossRef]
  6. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
    [CrossRef]
  7. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, �??Bragg scattering from periodically microstructured light emitting diodes,�?? Appl. Phys. Lett. 77, 3340-3342 (2000).
    [CrossRef]
  8. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, �??Increased efficiency and controlled light output from a microstructured light-emitting diode,�?? Adv. Mater. 13, 123-127 (2001).
    [CrossRef]
  9. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, �??Surface plasmon mediated emission from organic light-emitting diodes,�?? Adv. Mater. 14, 1393-1396 (2002).
    [CrossRef]
  10. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, �??Extracting light from polymer light-emitting diodes using stamped Bragg gratings,�?? Adv. Funct. Mater. 14, 451-456 (2004).
    [CrossRef]
  11. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  12. A. Mekis, M. Meier, A. Dodabalapur, R.E. Slusher, and J. D. Joannopoulos, �??Lasing mechanism in two-dimensional photonic crystal lasers,�?? Appl. Phys. A: Mater. Sci. 69, 111-114 (1999).
    [CrossRef]
  13. M. Notomi, H. Suzuki, and T. Tamamura, �??Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,�?? Appl. Phys. Lett. 78, 1325-1327 (2001).
    [CrossRef]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  15. N. Susa, �??Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,�?? J. Appl. Phys. 89, 815-823 (2001).
    [CrossRef]
  16. S. Nojima, �??Optical-gain enhancement in two-dimensional active photonic crystals,�?? J. Appl. Phys. 90, 545-551 (2001).
    [CrossRef]
  17. K. Sakoda, �??Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,�?? Opt. Express 4, 167-176 (1999). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-5-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-5-167</a>.
    [CrossRef] [PubMed]
  18. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, �??Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,�?? Appl. Phys. Lett. 80, 3476-3479 (2002).
    [CrossRef]
  19. O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, �??Formation of ordered mesoscopic patterns in polymer cast films by dewetting,�?? Thin Solid Films 327-329, 829-832 (1998).
    [CrossRef]
  20. J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, �??Fabrication and properties of organic light-emitting 'Nanodiode' arrays,�?? Nano Lett. 2, 333-335 (2002).
    [CrossRef]
  21. N. Patel, K. S. J. Cinà, and J. H. Burroughes, �??High-efficiency organic light-emitting diodes,�?? IEEE J. Select. Top. in Quantum Electron. 8, 346-361 (2002).
    [CrossRef]
  22. H.W. Zieler, �??Resolving power and limit of useful magnification in visual observation and photomicrography,�?? in Selected Papers on Optical Microscopy, M. D. Rhodes, ed., MS163/HC in Milestone Series, 163-174 (SPIE Optical Engineering Press, Washington, D.C., 2000).

Adv. Funct. Mater.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, �??Extracting light from polymer light-emitting diodes using stamped Bragg gratings,�?? Adv. Funct. Mater. 14, 451-456 (2004).
[CrossRef]

Adv. Mater.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, �??Increased efficiency and controlled light output from a microstructured light-emitting diode,�?? Adv. Mater. 13, 123-127 (2001).
[CrossRef]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, �??Surface plasmon mediated emission from organic light-emitting diodes,�?? Adv. Mater. 14, 1393-1396 (2002).
[CrossRef]

Y. R. Do, Y. C. Kim, Y.-W. Song, C.-O Cho, H. Jeon, Y.-J. Lee, S.-H. Kim, and Y.-H. Lee, �??Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals,�?? Adv. Mater. 15, 1214-1218 (2003).
[CrossRef]

Appl. Phys. A: Mater. Sci.

A. Mekis, M. Meier, A. Dodabalapur, R.E. Slusher, and J. D. Joannopoulos, �??Lasing mechanism in two-dimensional photonic crystal lasers,�?? Appl. Phys. A: Mater. Sci. 69, 111-114 (1999).
[CrossRef]

Appl. Phys. Lett.

M. Notomi, H. Suzuki, and T. Tamamura, �??Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,�?? Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, �??Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,�?? Appl. Phys. Lett. 80, 3476-3479 (2002).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, �??Bragg scattering from periodically microstructured light emitting diodes,�?? Appl. Phys. Lett. 77, 3340-3342 (2000).
[CrossRef]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, �??Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,�?? Appl. Phys. Lett. 75, 1036-1038 (1999).
[CrossRef]

H.-Y. Ryu, Y.-H. Lee, R. L. Sellin, and D. Bimberg, �??Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,�?? Appl. Phys. Lett. 79, 3573-3575 (2001).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

IEEE J. Select. Top. in Quantum Electron

N. Patel, K. S. J. Cinà, and J. H. Burroughes, �??High-efficiency organic light-emitting diodes,�?? IEEE J. Select. Top. in Quantum Electron. 8, 346-361 (2002).
[CrossRef]

IEEE J. Select. Topics in Quantum Elect.

J.-K. Hwang, H.-Y. Ryu, Y.-J. Lee, and Y.-H. Lee, "Enhancement of light extraction from two-dimensional photonic crystal slab structures," IEEE J. Selected Topics in Quantum Electronics 8, 231-237 (2002).
[CrossRef]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, �??The photonic band edge laser: A new approach to gain enhancement,�?? J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

N. Susa, �??Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,�?? J. Appl. Phys. 89, 815-823 (2001).
[CrossRef]

S. Nojima, �??Optical-gain enhancement in two-dimensional active photonic crystals,�?? J. Appl. Phys. 90, 545-551 (2001).
[CrossRef]

Nano Lett.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, �??Fabrication and properties of organic light-emitting 'Nanodiode' arrays,�?? Nano Lett. 2, 333-335 (2002).
[CrossRef]

Nature

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic Crystals: Putting a New Twist on Light,�?? Nature 386, 143-149 (1997).

Opt. Express

Selected Papers on Optical Microscopy

H.W. Zieler, �??Resolving power and limit of useful magnification in visual observation and photomicrography,�?? in Selected Papers on Optical Microscopy, M. D. Rhodes, ed., MS163/HC in Milestone Series, 163-174 (SPIE Optical Engineering Press, Washington, D.C., 2000).

Thin Solid Films

O. Karthaus, L. Grasjo, N. Maruyama, and M. Shimomura, �??Formation of ordered mesoscopic patterns in polymer cast films by dewetting,�?? Thin Solid Films 327-329, 829-832 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the nanohole OLEDs embedded in the 2D periodic SiO2 nanohole array. Inset is view from above the 2D array of nanohole OLEDs.

Fig. 2.
Fig. 2.

SEM images taken from the side and from above the 2D SiO2 nanohole array of nanoholes with a pitch of ~360 nm, a diameter of ~220 nm, and a height of ~120 nm on ITO glass.

Fig. 3.
Fig. 3.

FIB-SEM image of a cross-sectional view of the 2D nanohole OLEDs.

Fig. 4.
Fig. 4.

Applied voltage-luminance (left axis) dependence of both the conventional (filled squares) and the 2D nanohole OLEDs (half-filled circles). The luminance data for both OLEDs are the measuring data before correction. The current density-applied voltage (I-V, right axis) responses of the conventional and 2D nanohole OLEDs.

Fig. 5.
Fig. 5.

Plot of corrected EL luminance-current density for the conventional (filled squares) and 2D nanohole OLEDs (half-filled circles). The data for the moth-eye like OLED are corrected with the fill factor. Inset: Emission spectra measured along the normal of the surface (θ=0°) under an applied voltage of 10.0 V

Fig. 6.
Fig. 6.

Angular dependences of the CIE color coordinates for the conventional (filled squares) and 2D nanohole OLEDs (half-filled circles, pitch (Λ)=360 nm).

Metrics