Abstract

The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, B. R. Soller, and R. H. Micheels, “Partial least-squares modeling of near-infraread reflectance data for noninvasive in vivo determination of deep-tissue pH,” Appl. Spectrosc. 52, 400–406 (1998).
    [CrossRef]
  2. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and S. Vander, “Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-square regression,” Appl. Spectrosc. 54, 294–299 (2000).
    [CrossRef]
  3. K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).
  4. K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).
  5. S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
    [CrossRef]
  6. L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
    [CrossRef]
  7. M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
    [CrossRef] [PubMed]
  8. J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
    [CrossRef]
  9. M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
    [CrossRef]
  10. M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).
  11. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  12. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissues,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  13. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  14. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory.” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  15. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
    [CrossRef]
  16. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
    [CrossRef]
  17. L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
    [CrossRef]
  18. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386–396 (1997).
    [CrossRef] [PubMed]
  19. J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
    [CrossRef]
  20. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  21. W. Cui, C. Kumar, and B. Chance , “Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE1431, 180–191 (1991).
  22. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [CrossRef] [PubMed]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid -10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]

2002 (1)

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

2001 (2)

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

2000 (3)

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

S. Zhang, B. R. Soller, S. Kaur, K. Perras, and S. Vander, “Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-square regression,” Appl. Spectrosc. 54, 294–299 (2000).
[CrossRef]

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

1998 (1)

1997 (2)

1996 (1)

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
[CrossRef]

1995 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1993 (1)

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

1991 (1)

1989 (2)

F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
[CrossRef]

1983 (2)

1941 (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aarnoudse, J. G.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissues,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Bolin, F. P.

Borghuis, M. S.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

Chance, B.

W. Cui, C. Kumar, and B. Chance , “Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE1431, 180–191 (1991).

Colier, W. N. J. M.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

Cope, M.

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Cui, W.

W. Cui, C. Kumar, and B. Chance , “Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE1431, 180–191 (1991).

de Mul, F. F. M.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

Delpy, D. T.

Ference, R. J.

Ferwerda, H. A.

Fukunaga, T.

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
[CrossRef]

Graaff, R.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Groenhuis, R. A. J.

Hamaoka, T

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hirai, K

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

Homma, S.

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
[CrossRef]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Jentink, H. W.

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

Kagaya, A.

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
[CrossRef]

Katsumura, T

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

Kaur, S.

Kime, R

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

Kohata, D

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

Kudo, N

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Kudo, N.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

Kumar, C.

W. Cui, C. Kumar, and B. Chance , “Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE1431, 180–191 (1991).

Lin, L

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Lin, L.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

Matcher, S. J.

Micheels, R. H.

Moes, C. J. M.

Niwayama, M

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Niwayama, M.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

Patterson, M. S.

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
[CrossRef]

Perras, K.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Prahl, S. A.

Preuss, L. E.

Shao, J

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Shao, J.

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

Shiga, T.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

Shimizu, K.

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

Soller, B. R.

Takahashi, M.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Taylor, R. C.

Ten Bosch, J. J.

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

van Beekvelt, M. C. P.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

van Engelen, B. G. M.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Vander, S.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Wevers, R. A.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
[CrossRef]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissues,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wyman, D. R.

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
[CrossRef]

Yamamoto, K

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Yamamoto, K.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

Zhang, S.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Spectrosc. (2)

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Clin. Sci. (1)

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101, 21–28 (2001).
[CrossRef] [PubMed]

Comput. Methods Programs. Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs. Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Frontiers Med. Biol. Eng. (1)

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, “Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,” Frontiers Med. Biol. Eng. 10, 43–58 (2000).
[CrossRef]

IEICE Transactions on Information and Systems (1)

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, and T Katsumura, “A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,” IEICE Transactions on Information and Systems E85D, 115–123 (2002).

J. Biomed. Opt. (1)

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1, 418–424 (1996).
[CrossRef]

J. Comp. Phys. (1)

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.” J. Comp. Phys.,  81, 137–150 (1989).
[CrossRef]

Med. Phys. (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distribution of light in tissues,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Opt. Eng. (2)

J Shao, L Lin, M Niwayama, N Kudo, and K Yamamoto, “Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,” Opt. Eng. 40, 2293–2301 (2001).
[CrossRef]

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, “Similarity relations for anisotropic scattering in absorbing media,” Opt. Eng. 32, 244–251 (1993).
[CrossRef]

Phys. Med. Biol. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M Niwayama, L Lin, J Shao, N Kudo, and K Yamamoto, “Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,” Rev. Sci. Instrum. 71, 4571–4575 (2000).
[CrossRef]

Other (5)

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo, and K. Shimizu, “Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,” in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37–45 (1996).

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo, and M. Takahashi , “Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,” in Photon Propagation in Tissue III, D. A. Benaron, B. Chance, and M. Ferrari, Eds., Proc. SPIE3194, 159–165 (1998).

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto , “Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,” in Infrared Spectroscopy: New Tool in Medicine, H. H. Mantsch and M. Jackson, Eds., Proc. SPIE3257, 156–166 (1998).
[CrossRef]

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto , “Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy — mean optical pathlength without the influence of adipose tissue,” in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho, and A. E. T. Chiou, Eds., Proc. SPIE4082, 76–87 (2000).
[CrossRef]

W. Cui, C. Kumar, and B. Chance , “Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,” in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE1431, 180–191 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fat-muscle schematic for Monte Carlo simulation. tf is the thickness of the fat layer.

Fig. 2.
Fig. 2.

Schematic of the experimental set-up.

Fig. 3.
Fig. 3.

Comparison of experimental and simulation results at 760 nm.

Fig. 4.
Fig. 4.

Influence of the optical properties of the muscle layer on the relationship between the fat thickness and the diffuse reflectance normalized to values obtained with 0 mm fat thickness and muscle optical property of absorption coefficient µam =0.019 mm-1, reduced scattering coefficient µsm ’=0.6 mm-1.

Fig. 5.
Fig. 5.

Influence of the optical properties of the fat layer on the relationship between the fat thickness and the diffuse reflectance normalized to values obtained from model with 0 mm fat thickness and muscle optical property of absorption coefficient µam =0.02 mm-1 and reduced scattering coefficient µsm ’=0.7 mm-1.

Tables (3)

Tables Icon

Table 1. Optical properties of the fat and muscle layers at 760 nm. The data were used in the simulation and experiment.

Tables Icon

Table 2. Optical properties of fat layer and muscle layer used in the simulation for studying the influence of muscle on the relationship of fat thickness and detected diffuse reflectance.

Tables Icon

Table 3. Optical properties of fat layer and muscle layer used in the simulation for studying the influence of fat on the relationship of fat thickness and detected diffuse reflectance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y = A X 2 + B X + C
R det = R det * ( A X std 2 + B X std + C ) ( A X 2 + B X + C )

Metrics