Abstract

The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Zhang , B. R. Soller, and R. H. Micheels, �??Partial least-squares modeling of near-infraread reflectance data for noninvasive in vivo determination of deep-tissue pH,�?? Appl. Spectrosc. 52, 400-406 (1998).
    [CrossRef]
  2. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and S. Vander, �??Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-square regression,�?? Appl. Spectrosc. 54, 294-299 (2000).
    [CrossRef]
  3. K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo and K. Shimizu, �??Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,�?? in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37-45 (1996).
  4. K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo and M. Takahashi, �??Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,�?? in Photon Propagation in Tissue III, D. A. Benaron, B. Chance and M. Ferrari, Eds., Proc. SPIE 3194, 159-165 (1998).
  5. S. Homma, T. Fukunaga, and A. Kagaya, �??Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,�?? J. Biomed. Opt. 1, 418-424 (1996).
    [CrossRef]
  6. L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi and K. Yamamoto, �??Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,�?? 10, 43-58 (2000).
    [CrossRef]
  7. M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers and W. N. J. M. Colier, �??Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,�?? Clin. Sci. 101, 21-28 (2001).
    [CrossRef] [PubMed]
  8. J Shao, L Lin, M Niwayama, N Kudo, K Yamamoto, �??Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,�?? Opt. Eng. 40, 2293-2301 (2001).
    [CrossRef]
  9. M Niwayama, L Lin, J Shao, N Kudo, K Yamamoto, �??Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,�?? Rev. Sci. Instrum. 71, 4571-4575 (2000).
    [CrossRef]
  10. M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, T Katsumura, �??A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,�?? IEICE Transactions on Information and Systems E85D, 115-123 (2002).
  11. L. H. Wang, S. L. Jacques, and L. Q. Zheng, �??MCML-Monte Carlo modeling of light transport in multilayered tissues,�?? Comput. Methods Programs. Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  12. B. C. Wilson and G. Adam, �??A Monte Carlo model for the absorption and flux distribution of light in tissues,�?? Med. Phys. 10, 824-830 (1983).
    [CrossRef] [PubMed]
  13. L. G. Henyey and J. L. Greenstein, �??Diffuse radiation in galaxy,�?? Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  14. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, �??Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory.�?? Appl. Opt. 22, 2456-2462 (1983).
    [CrossRef] [PubMed]
  15. R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, �??Similarity relations for anisotropic scattering in absorbing media,�?? Opt. Eng. 32, 244-251 (1993).
    [CrossRef]
  16. D. R. Wyman, M. S. Patterson, and B. C. Wilson, �??Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.�?? J. Comp. Phys., 81, 137-150 (1989).
    [CrossRef]
  17. L.Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, K. Yamamoto, �??Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,�?? in Infrared Spectroscopy: New Tool in Medicine , H. H. Mantsch and M.Jackson, Eds., Proc. SPIE 3257, 156-166 (1998).
    [CrossRef]
  18. S. J. Matcher, M. Cope, and D. T. Delpy, �??In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,�?? Appl. Opt. 36, 386-396 (1997).
    [CrossRef] [PubMed]
  19. J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto, �??Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy �?? mean optical pathlength without the influence of adipose tissue,�?? in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho and A. E. T. Chiou, Eds., Proc. SPIE 4082, 76-87 (2000).
    [CrossRef]
  20. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, �??Refractive index of some mammalian tissues using a fiber optic cladding method,�?? Appl. Opt. 28, 2297-2303 (1989).
    [CrossRef] [PubMed]
  21. W. Cui, C. Kumar and B. Chance, �??Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,�?? in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE 1431, 180-191 (1991).
  22. R. Cubeddu A. Pifferi, P. Taroni, A. Torricelli and G. Valentini, �??A solid tissue phantom for photon migration studies,�?? Phys. Med. Biol. 42, 1971-1979 (1997).
    [CrossRef] [PubMed]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, �??Light scattering in Intralipid �?? 10% in the wavelength range of 400 �?? 1100 nm,�?? Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Astrophys. J.

L. G. Henyey and J. L. Greenstein, �??Diffuse radiation in galaxy,�?? Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Clin. Sci.

M. C. P. van Beekvelt, M. S. Borghuis, B. G. M. van Engelen, R. A. Wevers and W. N. J. M. Colier, �??Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,�?? Clin. Sci. 101, 21-28 (2001).
[CrossRef] [PubMed]

Comput. Methods Programs. Biomed.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, �??MCML-Monte Carlo modeling of light transport in multilayered tissues,�?? Comput. Methods Programs. Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Frontiers Med. Biol. Eng.

L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi and K. Yamamoto, �??Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation,�?? 10, 43-58 (2000).
[CrossRef]

IEICE Transactions on Info. and Sys.

M Niwayama, K Yamamoto, D Kohata, K Hirai, N Kudo, T Hamaoka, R Kime, T Katsumura, �??A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy,�?? IEICE Transactions on Information and Systems E85D, 115-123 (2002).

Int. Symp. On Non-invasive Optical Diag.

K. Yamamoto, M. Niwayama, L. Lin, T. shiga, N. Kudo and K. Shimizu, �??Influence of subcutaneous fat layer on muscle oxygenation measurement using NIRS,�?? in Proc. from the Int. Symp. On Non-invasive Optical Diagnosis, Beijing, China, 37-45 (1996).

J. Biomed. Opt.

S. Homma, T. Fukunaga, and A. Kagaya, �??Influence of adipose tissue thickness on near infrared spectroscopic signal in the measurement of human muscle,�?? J. Biomed. Opt. 1, 418-424 (1996).
[CrossRef]

J. Comp. Phys.

D. R. Wyman, M. S. Patterson, and B. C. Wilson, �??Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles.�?? J. Comp. Phys., 81, 137-150 (1989).
[CrossRef]

Med. Phys.

B. C. Wilson and G. Adam, �??A Monte Carlo model for the absorption and flux distribution of light in tissues,�?? Med. Phys. 10, 824-830 (1983).
[CrossRef] [PubMed]

Opt. Eng.

J Shao, L Lin, M Niwayama, N Kudo, K Yamamoto, �??Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy,�?? Opt. Eng. 40, 2293-2301 (2001).
[CrossRef]

R. Graaff, J. G. Aarnoudse, F. F. M. de Mul, and H. W. Jentink, �??Similarity relations for anisotropic scattering in absorbing media,�?? Opt. Eng. 32, 244-251 (1993).
[CrossRef]

Phys. Med. Biol.

R. Cubeddu A. Pifferi, P. Taroni, A. Torricelli and G. Valentini, �??A solid tissue phantom for photon migration studies,�?? Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Proc. SPIE

L.Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, K. Yamamoto, �??Two-layered phantom experiments for characterizing the influence of a fat layer on measurement of muscle oxygenation using NIRS,�?? in Infrared Spectroscopy: New Tool in Medicine , H. H. Mantsch and M.Jackson, Eds., Proc. SPIE 3257, 156-166 (1998).
[CrossRef]

J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto, �??Determination of a quantitative algorithm for the measurement of muscle oxygenation using CW near-infrared spectroscopy �?? mean optical pathlength without the influence of adipose tissue,�?? in Optical Sensing, Imaging, and Manipulation for Biological and Biomedical Applications, R. R. Alfano, P. P. Ho and A. E. T. Chiou, Eds., Proc. SPIE 4082, 76-87 (2000).
[CrossRef]

W. Cui, C. Kumar and B. Chance, �??Experimental study of migration depth for the photons measured at sample surface. I. Time resolved spectroscopy and imaging,�?? in Time-Resolved Spectroscopy and Imaging of Tissue, B. Chance, Eds., Proc. SPIE 1431, 180-191 (1991).

K. Yamamoto, M. Niwayama, L. Lin, T. Shiga, N. Kudo and M. Takahashi, �??Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer,�?? in Photon Propagation in Tissue III, D. A. Benaron, B. Chance and M. Ferrari, Eds., Proc. SPIE 3194, 159-165 (1998).

Rev. Sci. Instrum.

M Niwayama, L Lin, J Shao, N Kudo, K Yamamoto, �??Quantitative measurement of muscle hemoglobin oxygenation using near-infrared spectroscopy with correction for the influence of a subcutaneous fat layer,�?? Rev. Sci. Instrum. 71, 4571-4575 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fat-muscle schematic for Monte Carlo simulation. tf is the thickness of the fat layer.

Fig. 2.
Fig. 2.

Schematic of the experimental set-up.

Fig. 3.
Fig. 3.

Comparison of experimental and simulation results at 760 nm.

Fig. 4.
Fig. 4.

Influence of the optical properties of the muscle layer on the relationship between the fat thickness and the diffuse reflectance normalized to values obtained with 0 mm fat thickness and muscle optical property of absorption coefficient µam =0.019 mm-1, reduced scattering coefficient µsm ’=0.6 mm-1.

Fig. 5.
Fig. 5.

Influence of the optical properties of the fat layer on the relationship between the fat thickness and the diffuse reflectance normalized to values obtained from model with 0 mm fat thickness and muscle optical property of absorption coefficient µam =0.02 mm-1 and reduced scattering coefficient µsm ’=0.7 mm-1.

Tables (3)

Tables Icon

Table 1. Optical properties of the fat and muscle layers at 760 nm. The data were used in the simulation and experiment.

Tables Icon

Table 2. Optical properties of fat layer and muscle layer used in the simulation for studying the influence of muscle on the relationship of fat thickness and detected diffuse reflectance.

Tables Icon

Table 3. Optical properties of fat layer and muscle layer used in the simulation for studying the influence of fat on the relationship of fat thickness and detected diffuse reflectance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y = A X 2 + B X + C
R det = R det * ( A X std 2 + B X std + C ) ( A X 2 + B X + C )

Metrics