Abstract

We demonstrate rotation of live Chlamydomonas reinhardtii cells in an optical trap; the speed and direction of rotation are amenable to control by varying the optical trapping force. Cells rotate with a frequency of 60–100 rpm; functional flagella are shown to play a decisive role in rotation. The rotating cells generate torque (typically ~7500–12000 pN nm) that is much larger than that generated chemically by a dynein head in vitro (40 pN nm). The total force associated with a rotating live cell (~10 pN) suggests that activity of only a small fraction (~5%) of dynein molecules per beat cycle is sufficient to generate flagellar motion.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, & R. Sawada, �??Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,�?? J. Appl. Phys. 82, 2773-2779 (1997).
    [CrossRef]
  2. P. Galajda & P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  3. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, & K. Dholakia, �??Controlled rotation of optically-trapped microscopic particles.�?? Science 292, 912-914 (2001)
    [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, R. N. Heckenberg, & H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles.�?? Nature 394, 348-350 (1998).
    [CrossRef]
  5. H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger, H.W. Hellinga, & C.D. Montemagno, �??Control of a biomolecular motor-powered nanodevice with an engineered chemical switch,�?? Nature Materials 1, 173�??177 (2002).
    [CrossRef]
  6. J. E. Curtis & D. G. Grier, �??Modulated optical vortices.�?? Opt. Lett. 28, 872-874 (2003).
    [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, & S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  8. E.H. Harris, �??The Chlamydomonas Sourcebook,�?? Academic Press, Amsterdam (1989).
  9. J. Cosson, �??A moving image of flagella: News and views on the mechanisms involved in axonemal beating,�?? Cell Biology International 20, 83-94 (1996).
    [CrossRef] [PubMed]
  10. J.A. Dharmadhikari & D. Mathur, �??Using an optical trap to fold and align single red blood cells,�?? Current Sci. 86, 1432-1437 (2004).
  11. J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, & D. Mathur, �??Torque-generating malaria-infected red blood cells in an optical trap,�?? Opt. Express 12, 1179-1184 (2004).
    [CrossRef] [PubMed]
  12. S. Oza, in �??Rheology Vol. 3,�?? Ed. F.R. Eirich, Academic Press, New York, 1960.
  13. B. Bean & A. Harris, �??Selective inhibition of flagellar activity in Chlamydomonas by nickel,�?? J. Protozool 26, 235-240 (1979).
    [PubMed]
  14. K.A. Schmitz, D.L. Holcomb-Wygle, D.J. Oberski, & C.B. Lindemann, �??Measurement of the force produced by an intact bull sperm flagellum in isometric arrest and estimation of the dynein stall force,�?? Biophys. J., 79, 468-478 (2000).
    [CrossRef] [PubMed]
  15. R. Mallik, B.C. Carter, S.A. Lex, S.J. King, & S.P. Gross, �??Cytoplasmic dynein functions as a gear in response to load,�?? Nature 427, 649-652 (2004).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Galajda & P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Biophys. J. (1)

K.A. Schmitz, D.L. Holcomb-Wygle, D.J. Oberski, & C.B. Lindemann, �??Measurement of the force produced by an intact bull sperm flagellum in isometric arrest and estimation of the dynein stall force,�?? Biophys. J., 79, 468-478 (2000).
[CrossRef] [PubMed]

Cell Biology International (1)

J. Cosson, �??A moving image of flagella: News and views on the mechanisms involved in axonemal beating,�?? Cell Biology International 20, 83-94 (1996).
[CrossRef] [PubMed]

Current Sci. (1)

J.A. Dharmadhikari & D. Mathur, �??Using an optical trap to fold and align single red blood cells,�?? Current Sci. 86, 1432-1437 (2004).

J. Appl. Phys. (1)

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, & R. Sawada, �??Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,�?? J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

J. Protozool (1)

B. Bean & A. Harris, �??Selective inhibition of flagellar activity in Chlamydomonas by nickel,�?? J. Protozool 26, 235-240 (1979).
[PubMed]

Nature (2)

R. Mallik, B.C. Carter, S.A. Lex, S.J. King, & S.P. Gross, �??Cytoplasmic dynein functions as a gear in response to load,�?? Nature 427, 649-652 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, R. N. Heckenberg, & H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles.�?? Nature 394, 348-350 (1998).
[CrossRef]

Nature Materials (1)

H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger, H.W. Hellinga, & C.D. Montemagno, �??Control of a biomolecular motor-powered nanodevice with an engineered chemical switch,�?? Nature Materials 1, 173�??177 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, & K. Dholakia, �??Controlled rotation of optically-trapped microscopic particles.�?? Science 292, 912-914 (2001)
[CrossRef] [PubMed]

Other (2)

E.H. Harris, �??The Chlamydomonas Sourcebook,�?? Academic Press, Amsterdam (1989).

S. Oza, in �??Rheology Vol. 3,�?? Ed. F.R. Eirich, Academic Press, New York, 1960.

Supplementary Material (3)

» Media 1: MPG (1602 KB)     
» Media 2: MPG (1910 KB)     
» Media 3: MPG (1188 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Image of a wild-type Chlamydomonas cell stained with a synthetic dye, depicting the cell body (long diameter ~10 µm) and two flagella; (b) cartoon representation of the cross section (proximal to the cell body) of a single axoneme of the flagella (see text).

Fig. 2.
Fig. 2.

(a) Real time movie showing rotation of trapped Chlamydomonas cells (1.57 MB). (b) Movie showing changes in the rotational speed of the trapped cell (1.17 MB). (c) Movie showing that cell rotation can be made to change from clockwise to counterclockwise by varying the trapping force (1.87 MB).

Fig. 3.
Fig. 3.

Addition of Ni2+ ions to wild type Chlamydomonas cells renders the flagella immotile; cell rotation ceases. Subsequent addition of excess Ca2+ ions restores cell rotation. Acid-shocked cells behaved identically to nickel treated ones.

Fig. 4.
Fig. 4.

Typical rotational frequencies for wild type and unflagellated Chlamydomonas cells.

Metrics