Abstract

The properties of a hollow core photonic bandgap fiber designed for 1.55 um transmission are investigated with special emphasis on polarization issues. Large and strongly wavelength dependent phase and group delays are found. At the same time the principle states of polarization move strongly and erratically as a function of wavelength, leading to strong mode coupling. Wavelength regions with high polarization dependent loss coincide with depolarization due to a polarization dependent coupling to surface modes at these wavelengths.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Russel, "Photonic Crystal Fibers," Science 299, 358-362, 2003
    [CrossRef]
  2. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539, 1999
    [CrossRef] [PubMed]
  3. J.D. Shephard, J.D.C. Jones, D.P. Hand, G. Bouwmans, J.C. Knight, P.St.J. Russell, B.J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a.>
    [CrossRef] [PubMed]
  4. D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K. Koch, A.L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704, 2003
    [CrossRef] [PubMed]
  5. J. Laegsgaard, N.A. Mortensen, J. Riishede, A. Bjarklev, "Material effects in air-guiding photonic bandgap fibers," J. Opt. Soc. America B: Opt. Phys. 20, 2046-2051, 2003
    [CrossRef]
  6. N. Venkataraman, M.T. Gallagher, C.M. Smith, D. Müller, J.A.West, K.W.Koch, J.C. Fajardo, "Low loss (13 dB/km) air core photonicband-gap fibre," in proceedings of ECOC 2002, paper PD 1.1, Copenhagen, Denmark, 2002
  7. C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J.A. West, N.F. Borrelli, D.C. Allan, K.W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659, 2003
    [CrossRef] [PubMed]
  8. B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T.A. Birks, J.C. Knight, P.St.J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber," in proceedings of OFC 2004, paper PDP24, Los Angeles, USA, 2004
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244, 2005, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236</a.>
    [CrossRef] [PubMed]
  10. T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H.R. Simonson, M.D. Nielsen, P.M.W. Skovgaard, J.R. Folkenberg, A. Bjarklev, "Air-guidance over 345m large-core photonic bandgap fiber," in proceedings of OFC 2003, paper PD4-1-3,Atlanta, USA, 2003
  11. H.K. Kim, M.J.F. Digonnet, G.S. Kino, J. Shin, S. Fan,"Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436</a.>
    [CrossRef] [PubMed]
  12. H.K. Kim, J. Shin, S. Fan, M.J.F. Digonnet, G.S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556, 2004
    [CrossRef]
  13. K. Saitoh, M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109, 2003, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100</a.>
    [CrossRef] [PubMed]
  14. J. Broeng, S.E. Barkou, T. Sondergaard, A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98, 2000
    [CrossRef]
  15. D. Müller, J. West, K. Koch, "Interferometric chromatic dispersion measurement of a photonic band-gap fiber," Active and passive optical components for WDM communications II, in proceedings of SPIE 4870, 395-403, 2002
  16. J. Jaspara, R. Bise, T. Her, J. Nicholson, "Effect of mode-cut-off on dispersion in photonic bandgap fibers," in proceedings of OFC 2003, paper ThI3, 492-493, Atlanta, USA, 2003
  17. T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H.R. Simonsen, M.D. Nielsen, P.M.W. Skovgaard, J.R. Folkenberg, A. Bjarklev, "Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling," J. Lightwave Technol. 22, 11-15, 2004
    [CrossRef]
  18. G. Bouwmans, F. Luan, J.C. Knight, P.St.J. Russell, L. Farr, B.J. Mangan, H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620, 2003, http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613
    [CrossRef] [PubMed]
  19. X. Chen, M.J. Li, N. Venkataraman, M.T. Gallagher, W.A. Wood, A.M. Crowley, J.P. Carberry, L.A. Zenteno, K.W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a.>
    [CrossRef] [PubMed]
  20. K. Saitoh, M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293, 2002
    [CrossRef]
  21. M. Wegmuller, N. Gisin, T.P. Hansen, C. Jakobsen, J. Broeng, "Polarization properties of an air-guiding Photonic Bandgap Fibre for 1550 nm transmission," in proceedings of ECOC 2004, paper Mo4.3.7, Stockholm, Sweden, 2004
  22. G. Mussi, N. Gisin, R. Passy, J.P. Von Der Weid, "On the characterization of optical fiber network components with OFDR," J. Lightwave Technol. 15, 1-11, 1997
  23. M. Wegmuller, M. Legré, N.Gisin, "Distributed beatlength measurements in single-mode optical fibers with optical frequency domain reflectometry," J. Lightwave Technol. 20, 828-835, 2002
    [CrossRef]
  24. B. Huttner, J. Recht, O. Guinnard, J.P.Von Der Weid, R. Passy, "Local Birefringence Measurements in Single Mode Fibers with Coherent Optical Frequency-Domain Reflectometry," Photon. Technol. Lett. 10, 1458-1460, 1998
    [CrossRef]
  25. F. Corsi, A. Galtarossa, L. Palmieri, "Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers," J. Lightwave Technol. 17, 1172-1178, 1999
    [CrossRef]
  26. N. Gisin, J.P. Von der Weid, J.P. Pellaux, "Polarization mode dispersion of short and long single-mode fibers," J. Lightwave Technol. 9, 821-827, 1991
    [CrossRef]
  27. M. Legré, M. Wegmuller, N.Gisin, "Investigation of the ratio between phase and group birefringence in optical single-mode fibers," J. Lightwave Technol. 21, 3374-3378, 2003
    [CrossRef]
  28. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, "Experimental study of polarization properties of highly birefringent photonic crystal fibers," Opt. Express 12, 5931-5939, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5931</a>.
    [CrossRef] [PubMed]
  29. G. Statkiewicz, T. Martynkien, W. Urbanczyk, �??Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,�?? Opt. Communications 241, 339-348, 2004
    [CrossRef]
  30. M. Wegmuller, M. Legré, N. Gisin, K.P. Hansen, T.P. Hansen, C. Jakobsen, "Detailed polarization properties comparison of three completely different species of highly birefringent fibers," Symposium on Optical Fiber Measurements 2004, NIST Special Publication 1024, 119-122, 2004
  31. B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069, 1992
    [CrossRef]
  32. M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, W.J. Bock, "Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers," in proceedings of International Conf. on Transparent Optical Networks ICTON 2002, paper We.P.10, 89-92, Warsaw, Poland, 2002
  33. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, H. Thienpont, "Sensitivity of holey fiber based sensors," in proceedings of International Conf. on Transparent Optical Networks ICTON 2003, paper Tu.P.22, 340-343, Warsaw, Poland, 2003
    [CrossRef]

ECOC 2002 (1)

N. Venkataraman, M.T. Gallagher, C.M. Smith, D. Müller, J.A.West, K.W.Koch, J.C. Fajardo, "Low loss (13 dB/km) air core photonicband-gap fibre," in proceedings of ECOC 2002, paper PD 1.1, Copenhagen, Denmark, 2002

ECOC 2004 (1)

M. Wegmuller, N. Gisin, T.P. Hansen, C. Jakobsen, J. Broeng, "Polarization properties of an air-guiding Photonic Bandgap Fibre for 1550 nm transmission," in proceedings of ECOC 2004, paper Mo4.3.7, Stockholm, Sweden, 2004

ICTON 2002 (1)

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wojcik, W.J. Bock, "Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers," in proceedings of International Conf. on Transparent Optical Networks ICTON 2002, paper We.P.10, 89-92, Warsaw, Poland, 2002

ICTON 2003 (1)

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmansa, H. Thienpont, "Sensitivity of holey fiber based sensors," in proceedings of International Conf. on Transparent Optical Networks ICTON 2003, paper Tu.P.22, 340-343, Warsaw, Poland, 2003
[CrossRef]

IEEE J. Quantum Electron. (1)

H.K. Kim, J. Shin, S. Fan, M.J.F. Digonnet, G.S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556, 2004
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Saitoh, M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293, 2002
[CrossRef]

B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069, 1992
[CrossRef]

J. Lightwave Technol. (6)

F. Corsi, A. Galtarossa, L. Palmieri, "Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers," J. Lightwave Technol. 17, 1172-1178, 1999
[CrossRef]

M. Legré, M. Wegmuller, N.Gisin, "Investigation of the ratio between phase and group birefringence in optical single-mode fibers," J. Lightwave Technol. 21, 3374-3378, 2003
[CrossRef]

T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H.R. Simonsen, M.D. Nielsen, P.M.W. Skovgaard, J.R. Folkenberg, A. Bjarklev, "Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling," J. Lightwave Technol. 22, 11-15, 2004
[CrossRef]

G. Mussi, N. Gisin, R. Passy, J.P. Von Der Weid, "On the characterization of optical fiber network components with OFDR," J. Lightwave Technol. 15, 1-11, 1997

M. Wegmuller, M. Legré, N.Gisin, "Distributed beatlength measurements in single-mode optical fibers with optical frequency domain reflectometry," J. Lightwave Technol. 20, 828-835, 2002
[CrossRef]

N. Gisin, J.P. Von der Weid, J.P. Pellaux, "Polarization mode dispersion of short and long single-mode fibers," J. Lightwave Technol. 9, 821-827, 1991
[CrossRef]

J. Opt. Soc. America B: Opt. Phys. (1)

J. Laegsgaard, N.A. Mortensen, J. Riishede, A. Bjarklev, "Material effects in air-guiding photonic bandgap fibers," J. Opt. Soc. America B: Opt. Phys. 20, 2046-2051, 2003
[CrossRef]

Nature (1)

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J.A. West, N.F. Borrelli, D.C. Allan, K.W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659, 2003
[CrossRef] [PubMed]

OFC 2003 (2)

T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H.R. Simonson, M.D. Nielsen, P.M.W. Skovgaard, J.R. Folkenberg, A. Bjarklev, "Air-guidance over 345m large-core photonic bandgap fiber," in proceedings of OFC 2003, paper PD4-1-3,Atlanta, USA, 2003

J. Jaspara, R. Bise, T. Her, J. Nicholson, "Effect of mode-cut-off on dispersion in photonic bandgap fibers," in proceedings of OFC 2003, paper ThI3, 492-493, Atlanta, USA, 2003

OFC 2004 (1)

B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T.A. Birks, J.C. Knight, P.St.J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber," in proceedings of OFC 2004, paper PDP24, Los Angeles, USA, 2004

Opt. Communications (1)

G. Statkiewicz, T. Martynkien, W. Urbanczyk, �??Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,�?? Opt. Communications 241, 339-348, 2004
[CrossRef]

Opt. Express (7)

H.K. Kim, M.J.F. Digonnet, G.S. Kino, J. Shin, S. Fan,"Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3436</a.>
[CrossRef] [PubMed]

X. Chen, M.J. Li, N. Venkataraman, M.T. Gallagher, W.A. Wood, A.M. Crowley, J.P. Carberry, L.A. Zenteno, K.W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3888</a.>
[CrossRef] [PubMed]

T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, "Experimental study of polarization properties of highly birefringent photonic crystal fibers," Opt. Express 12, 5931-5939, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5931</a>.
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244, 2005, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-236</a.>
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, J.C. Knight, P.St.J. Russell, L. Farr, B.J. Mangan, H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620, 2003, http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109, 2003, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100</a.>
[CrossRef] [PubMed]

J.D. Shephard, J.D.C. Jones, D.P. Hand, G. Bouwmans, J.C. Knight, P.St.J. Russell, B.J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723, 2004, <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a.>
[CrossRef] [PubMed]

Opt. Lett. (1)

Optical Fiber Measurements 2004 (1)

M. Wegmuller, M. Legré, N. Gisin, K.P. Hansen, T.P. Hansen, C. Jakobsen, "Detailed polarization properties comparison of three completely different species of highly birefringent fibers," Symposium on Optical Fiber Measurements 2004, NIST Special Publication 1024, 119-122, 2004

Photon. Technol. Lett. (1)

B. Huttner, J. Recht, O. Guinnard, J.P.Von Der Weid, R. Passy, "Local Birefringence Measurements in Single Mode Fibers with Coherent Optical Frequency-Domain Reflectometry," Photon. Technol. Lett. 10, 1458-1460, 1998
[CrossRef]

proceedings of SPIE (1)

D. Müller, J. West, K. Koch, "Interferometric chromatic dispersion measurement of a photonic band-gap fiber," Active and passive optical components for WDM communications II, in proceedings of SPIE 4870, 395-403, 2002

Science (3)

D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K. Koch, A.L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704, 2003
[CrossRef] [PubMed]

P. Russel, "Photonic Crystal Fibers," Science 299, 358-362, 2003
[CrossRef]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539, 1999
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

SEM pictures of a typical cross-section of the investigated HC-PBGF.

Fig. 2.
Fig. 2.

Measured overall insertion loss (including SMF pigtails on both sides of the HC-PBGF).

Fig. 3.
Fig. 3.

Distributed reflectivity along 50 m long HC-PBGF (blue). Green curve, reflection of an SMF fiber of similar length (slightly shifted in distance for better comparison) and reflectivity (not shifted). Ghost is a measurement artefact (the reflective peak at the entry of the HC-PBGF takes the role of the local oscillator, see [23] for details).

Fig. 4.
Fig. 4.

Measured PDL for 50 m long HC-PBGF, as a function of wavelength.

Fig. 5.
Fig. 5.

Measured mode-fields (contour lines) for some selected wavelengths at the exit of the 50 m long HC-PBGF, on top of the HC-PBGF structure.

Fig. 6.
Fig. 6.

DOP (blue) and total (polarized and unpolarized) transmitted power S0 (light gray, raw data; red, adjacent averaging) at 1480 nm as a function of the arbitrarily varied launch polarization. Measurements are rearranged for increasing DOP.

Fig. 7.
Fig. 7.

Typical power spectral density (psd) of backscattered OFDR signal power after linear polarizer.

Fig. 8.
Fig. 8.

Interferometric PMD traces for 50 m long HC-PBGF, using an LED centered at 1542.5 nm. Green, no HC-PBGF; blue, depolarized LED; red, polarized LED.

Fig. 9.
Fig. 9.

Differential group delay after the 50 m long HC-PBGF, as a function of wavelength, using JME (left). Phase delay (blue) and ratio of group to phase delay (black) as a function of wavelength (right).

Fig. 10.
Fig. 10.

Evolution of the output polarization state as a function of wavelength for the HC-PBGF (left) and a PCF with similar birefringence (right).

Fig. 11.
Fig. 11.

Mean difference in the PSP direction (on the Poincaré sphere) for two different wavelength separations, as a function of wavelength. Also shown is the differential group delay for easy comparison. Both sets of data are for 50 m long HC-PBGF.

Metrics