Abstract

We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2×2 switches respectively

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Capmany, B.Ortega, D. Pastor and S.Sales, �??Discrete time optical processing of microwave signals,�?? (invited paper, IEEE/OSA J. Lightwave Technol. 23, (2005).
  2. D.B. Hunter and R.A. Minasian, �??Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure,�?? IEEE Trans. Microwave Theory and Techn. 8, 1463-1466 (1997).
    [CrossRef]
  3. J. Capmany, D. Pastor and B. Ortega, �??New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,�?? IEEE Trans. Microwave Theory Tech. 47, 1321-1327 (1999).
    [CrossRef]
  4. D.B. Hunter and R.A. Minasian, �??Microwave optical filters using in-fiber Bragg grating arrays,�?? IEEE Microwave and Guided Wave Lett. 6, 103-105 (1996).
    [CrossRef]
  5. W. Zhang and J.A.R. Williams, �??Fibre optic bandpass transversal filter employing fibre grating arrays,�?? Electronics Letters 35, 1010-1011 (1999).
    [CrossRef]
  6. J.Mora, B.Ortega, M.V.Andres, J.Capmany, D. Pastor, J.L.Cruz, S.Sales, �??Tunable chirped fibre Bragg grating device controlled by variable magnetic fields,�?? Electron. Lett. 38, 118-119 (2002).
    [CrossRef]
  7. B. Vidal, V. Polo J.L. Corral and J. Marti, �??Photonic microwave filter with tunning and reconfiguration capabilities using optical switches and dispersive media,�?? Electron. Lett. 39, 547-548 (2003).
    [CrossRef]
  8. D. Pastor, et al., �??Reconfigurable RF-Photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,�?? IEEE Photon. Tech. Lett. 16, 2126-2128 (2004).
    [CrossRef]
  9. N. You and R.A. Minasian, �??A novel high-Q optical microwave processor using hybrid delay line filters,�?? IEEE Trans. Microwave Theory Technol. 47, 1304-1308 (1999).
    [CrossRef]
  10. A.E. Reader and B.L. Anderson, �??Demonstration of a linear true time delay device using a microelectromechanical mirror array,�?? Appl. Opt. 42, 1419-1416 (2003).

Appl. Opt. (1)

A.E. Reader and B.L. Anderson, �??Demonstration of a linear true time delay device using a microelectromechanical mirror array,�?? Appl. Opt. 42, 1419-1416 (2003).

Electron. Lett. (2)

J.Mora, B.Ortega, M.V.Andres, J.Capmany, D. Pastor, J.L.Cruz, S.Sales, �??Tunable chirped fibre Bragg grating device controlled by variable magnetic fields,�?? Electron. Lett. 38, 118-119 (2002).
[CrossRef]

B. Vidal, V. Polo J.L. Corral and J. Marti, �??Photonic microwave filter with tunning and reconfiguration capabilities using optical switches and dispersive media,�?? Electron. Lett. 39, 547-548 (2003).
[CrossRef]

Electronics Letters (1)

W. Zhang and J.A.R. Williams, �??Fibre optic bandpass transversal filter employing fibre grating arrays,�?? Electronics Letters 35, 1010-1011 (1999).
[CrossRef]

IEEE Microwave and Guided Wave Lett. (1)

D.B. Hunter and R.A. Minasian, �??Microwave optical filters using in-fiber Bragg grating arrays,�?? IEEE Microwave and Guided Wave Lett. 6, 103-105 (1996).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

D. Pastor, et al., �??Reconfigurable RF-Photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,�?? IEEE Photon. Tech. Lett. 16, 2126-2128 (2004).
[CrossRef]

IEEE Trans. Microwave Theory and Techn. (1)

D.B. Hunter and R.A. Minasian, �??Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure,�?? IEEE Trans. Microwave Theory and Techn. 8, 1463-1466 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. Capmany, D. Pastor and B. Ortega, �??New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,�?? IEEE Trans. Microwave Theory Tech. 47, 1321-1327 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

N. You and R.A. Minasian, �??A novel high-Q optical microwave processor using hybrid delay line filters,�?? IEEE Trans. Microwave Theory Technol. 47, 1304-1308 (1999).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

J. Capmany, B.Ortega, D. Pastor and S.Sales, �??Discrete time optical processing of microwave signals,�?? (invited paper, IEEE/OSA J. Lightwave Technol. 23, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transversal filter configurations and experimental layouts

Fig. 2.
Fig. 2.

Transfer functions of a 7 tap transversal filter with a switched dispersive delay line of 24 km using fixed laser diodes

Fig. 3.
Fig. 3.

Transfer functions of a 7 tap transversal filter with a switched dispersive delay line of 29.8 km using fixed laser diodes

Fig. 4.
Fig. 4.

Transfer functions of a 7 tap transversal filter with a switched dispersive delay line of 48 km using fixed laser diodes

Fig. 5.
Fig. 5.

Transfer functions of a 9 tap transversal filter with a switched dispersive delay line of 24 km using a sliced broadband source

Metrics