Abstract

A new method to perform simultaneously three dimensional optical sectioning and optical manipulation is presented. The system combines a multi trap optical tweezers with a video microscope to enable axial scanning of living cells while maintaining the trapping configuration at a fixed position. This is achieved compensating the axial movement of the objective by shaping the wave front of the trapping beam with properly diffractive optical elements displayed on a computer controlled spatial light modulator. Our method has been validated in three different experimental configurations. In the first, we decouple the position of a trapping plane from the axial movements of the objective and perform optical sectioning of a circle of beads kept on a fixed plane. In a second experiment, we extend the method to living cell microscopy by showing that mechanical constraints can be applied on the dorsal surface of a cell whilst performing its fluorescence optical sectioning. In the third experiment, we trapped beads in a three dimensional geometry and perform, always through the same objective, an axial scan of the volume delimited by the beads.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S.W. Paddock,�??Confocal laser scanning microscopy,�?? BioTechniques 27, 992 (1999).
    [PubMed]
  2. D.W. Piston, �??Imaging living cells and tissues by two-photon excitation microscopy,�?? Trends Cell Biol. 9, 66 (1999).
    [CrossRef] [PubMed]
  3. M. Oheim, D. Loerke, R.H. Chow and W. Stuhmer, �??Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,�?? Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
    [CrossRef] [PubMed]
  4. F. S. Wouters, P. J. Verveer and P. I. Bastianes, �??Imaging biochemistry inside cells,�?? Trends Cell Biol. 11, 203 (2001).
    [CrossRef] [PubMed]
  5. M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux and M. Coppey-Moisan, �??FRET and fluorescence lifetime imaging microscopy,�?? in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127-144.
  6. David G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  7. A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517 (1987).
    [CrossRef] [PubMed]
  8. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger and T. Nystrom, �??Sorting out bacteria viability with optical tweezers,�?? J. Bacteriology 182, 5551 (2000).
    [CrossRef]
  9. A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H.Tanaka and T. Yanagida, �??Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,�?? Cell 92, 161 (1998).
  10. O. Thoumine, P. Kocian A. Kottelat and J. J. Meister, �??Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,�?? Eur. Biophys. J. 29, 398-408 (2000).
    [CrossRef] [PubMed]
  11. K. Svoboda and S. M. Block, �??Force and velocity measured for single kinesin molecules,�?? Cell 77, 773-784 (1994).
  12. J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear and D.C. White, �??Movement and force produced by a single myosin head,�?? Nature 378, 709-212 (1995).
    [CrossRef]
  13. D. Choquet, D. Felsenfeld and M. P. Sheetz, �??Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,�?? Cell 88, 39-48 (1997).
  14. C. G. Galbraith, K. M. Yamada and M. P. Sheetz, �??The relationship between force and focal complex development,�?? J. Cell Biol. 159, 695-705 (2002).
    [CrossRef] [PubMed]
  15. M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn and M. A. Schwartz, �??Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,�?? Nature Cell Biol. 4, 232-239 (2002).
    [CrossRef] [PubMed]
  16. M. Lambert, D. Choquet and R. M. Mege, �??Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,�?? J. Cell Biol. 3, 469-479 (2002).
    [CrossRef]
  17. V. Emiliani, D. Sanvitto, C. Durieux and M. Coppey-Moisan, �??Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,�?? submitted (2005).
  18. G. Lenormand, S. Henon, A. Richert, J. Simeon and F. Gallet, �??Elasticity of the human red blood cell skeleton,�?? Biorheology 40, 247-251 (2003).
  19. K. Visscher, G. Brakenhoff and J. J. Krol, �??Micromanipulation by 'multiple' optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry 14, 105-114 (1993).
    [CrossRef] [PubMed]
  20. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal and M. Coppey-Moisan, �??Multi Force optical tweezers to generate gradients of force,�?? Opt. Express 12, 3906-3910 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906</a>.
    [CrossRef] [PubMed]
  21. E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  22. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia and D. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562-3567 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>.
    [CrossRef] [PubMed]
  23. G. Sinclair, P. Jordan, J. Courtial, M. Padgett and Z. J. Laczik, �??Assembly of 3 dimensional structures using programmable holographic optical tweezers,�?? Opt. Express 12, 5475-5480 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475</a>.
    [CrossRef] [PubMed]
  24. D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia and E. Di Fabrizio, �??Multiple optical trapping by means of diffractive optical elements,�?? Jpn. J. Appl. Phys. 43, 3910-3915 (2004).
    [CrossRef]
  25. K. T. Gahagan and G.A. Swartzlander, Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  26. J. E. Curtis, B. A. Koss and D. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  27. P. J. Rodrigo, V. R. Daria and J. Gluckstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,�?? Opt. Express 12, 1417-1425 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417</a>.
    [CrossRef] [PubMed]
  28. G. Sinclair, P. Jordan, J. Leach and M. J. Padgett, �??Defining the trapping limits of holographical optical tweezers,�?? J. of Mod. Optics 51, 409-414 (2004).
    [CrossRef]
  29. M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman and S.M. Block, �??Simultaneous, coincident optical trapping and single-molecule fluorescence,�?? Nat. Meth. 22, 133-139 (2004).
    [CrossRef]
  30. M. Goksor, J. Enger and D. Hanstrop �??Optical manipulation in combination of single-cell studies,�?? Appl. Optics 43, 4831-4837 (2004).
    [CrossRef]
  31. A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl and K. O. Greulich, �??Optical tweezers for confocal microscopy,�?? Appl. Phys. B 71, 747-753 (2000).
    [CrossRef]
  32. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci and T. Wilhein, �??Diffractive optical elements for differential interference contrast X-ray microscopy,�?? Opt. Express 11, 2278-2288 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278</a>.
    [CrossRef] [PubMed]
  33. B. Geiger, A. Bershadsky, R. Pankov and K. M. Ymada, �??Transmembrane extracellular matrix-cytoskeleton crosstalk,�?? Nat. Rev. Mol. Cell Biol. 2, 793-805 (2001).
    [CrossRef] [PubMed]
  34. E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin and M. Altissimo, �??Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,�?? Microscopy Research and Technique 65, 252-262 (2005).
    [CrossRef] [PubMed]

Appl. Optics (1)

M. Goksor, J. Enger and D. Hanstrop �??Optical manipulation in combination of single-cell studies,�?? Appl. Optics 43, 4831-4837 (2004).
[CrossRef]

Appl. Phys. B (1)

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl and K. O. Greulich, �??Optical tweezers for confocal microscopy,�?? Appl. Phys. B 71, 747-753 (2000).
[CrossRef]

Biorheology (1)

G. Lenormand, S. Henon, A. Richert, J. Simeon and F. Gallet, �??Elasticity of the human red blood cell skeleton,�?? Biorheology 40, 247-251 (2003).

BioTechniques (1)

S.W. Paddock,�??Confocal laser scanning microscopy,�?? BioTechniques 27, 992 (1999).
[PubMed]

Cell (3)

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H.Tanaka and T. Yanagida, �??Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,�?? Cell 92, 161 (1998).

K. Svoboda and S. M. Block, �??Force and velocity measured for single kinesin molecules,�?? Cell 77, 773-784 (1994).

D. Choquet, D. Felsenfeld and M. P. Sheetz, �??Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,�?? Cell 88, 39-48 (1997).

Cytometry (1)

K. Visscher, G. Brakenhoff and J. J. Krol, �??Micromanipulation by 'multiple' optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry 14, 105-114 (1993).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

O. Thoumine, P. Kocian A. Kottelat and J. J. Meister, �??Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,�?? Eur. Biophys. J. 29, 398-408 (2000).
[CrossRef] [PubMed]

J. Bacteriology (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger and T. Nystrom, �??Sorting out bacteria viability with optical tweezers,�?? J. Bacteriology 182, 5551 (2000).
[CrossRef]

J. Cell Biol. (2)

M. Lambert, D. Choquet and R. M. Mege, �??Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,�?? J. Cell Biol. 3, 469-479 (2002).
[CrossRef]

C. G. Galbraith, K. M. Yamada and M. P. Sheetz, �??The relationship between force and focal complex development,�?? J. Cell Biol. 159, 695-705 (2002).
[CrossRef] [PubMed]

J. of Mod. Optics (1)

G. Sinclair, P. Jordan, J. Leach and M. J. Padgett, �??Defining the trapping limits of holographical optical tweezers,�?? J. of Mod. Optics 51, 409-414 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia and E. Di Fabrizio, �??Multiple optical trapping by means of diffractive optical elements,�?? Jpn. J. Appl. Phys. 43, 3910-3915 (2004).
[CrossRef]

Live Cell Imaging: A laboratory Manual (1)

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux and M. Coppey-Moisan, �??FRET and fluorescence lifetime imaging microscopy,�?? in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127-144.

Microscopy Research and Technique (1)

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin and M. Altissimo, �??Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,�?? Microscopy Research and Technique 65, 252-262 (2005).
[CrossRef] [PubMed]

Nat. Meth. (1)

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman and S.M. Block, �??Simultaneous, coincident optical trapping and single-molecule fluorescence,�?? Nat. Meth. 22, 133-139 (2004).
[CrossRef]

Nat. Rev. Mol. Cell Biol. (1)

B. Geiger, A. Bershadsky, R. Pankov and K. M. Ymada, �??Transmembrane extracellular matrix-cytoskeleton crosstalk,�?? Nat. Rev. Mol. Cell Biol. 2, 793-805 (2001).
[CrossRef] [PubMed]

Nature (2)

David G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810 (2003).
[CrossRef] [PubMed]

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear and D.C. White, �??Movement and force produced by a single myosin head,�?? Nature 378, 709-212 (1995).
[CrossRef]

Nature Cell Biol. (1)

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn and M. A. Schwartz, �??Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,�?? Nature Cell Biol. 4, 232-239 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss and D. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (5)

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci and T. Wilhein, �??Diffractive optical elements for differential interference contrast X-ray microscopy,�?? Opt. Express 11, 2278-2288 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278</a>.
[CrossRef] [PubMed]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia and D. McGloin, �??Optical trapping of three-dimensional structures using dynamic holograms,�?? Opt. Express 11, 3562-3567 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a>.
[CrossRef] [PubMed]

P. J. Rodrigo, V. R. Daria and J. Gluckstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,�?? Opt. Express 12, 1417-1425 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417</a>.
[CrossRef] [PubMed]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal and M. Coppey-Moisan, �??Multi Force optical tweezers to generate gradients of force,�?? Opt. Express 12, 3906-3910 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906</a>.
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett and Z. J. Laczik, �??Assembly of 3 dimensional structures using programmable holographic optical tweezers,�?? Opt. Express 12, 5475-5480 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475</a>.
[CrossRef] [PubMed]

Opt. Lett. (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci (1)

M. Oheim, D. Loerke, R.H. Chow and W. Stuhmer, �??Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,�?? Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets and D. G. Grier, �??Computer-generated holographic optical tweezer arrays,�?? Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517 (1987).
[CrossRef] [PubMed]

Trends Cell Biol. (2)

F. S. Wouters, P. J. Verveer and P. I. Bastianes, �??Imaging biochemistry inside cells,�?? Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

D.W. Piston, �??Imaging living cells and tissues by two-photon excitation microscopy,�?? Trends Cell Biol. 9, 66 (1999).
[CrossRef] [PubMed]

Other (1)

V. Emiliani, D. Sanvitto, C. Durieux and M. Coppey-Moisan, �??Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,�?? submitted (2005).

Supplementary Material (3)

» Media 1: AVI (1622 KB)     
» Media 2: AVI (3146 KB)     
» Media 3: AVI (876 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the trapping (red) and the imaging (green) beam paths. L - laser, SLM - spatial light modulator, DM - infrared dichroic mirror, MO - microscope objective, TL - tube lens, T - telescope; (b) Calibration curve which relates the SLM focal length, fSLM, to the axial position, z, of the trapping plane.

Fig. 2.
Fig. 2.

Transmission image of a 3D structure of beads trapped in three planes at an axial distance of 2 µm. The imaging plane is adjusted at z1=9.6µm, so that the intermediate plane of the structure results in focus.

Fig. 3.
Fig. 3.

Relative positions (not in scale) of the trapping, imaging and objective planes with respect to the coverslip and the objective focal plane during an axial scan.

Fig. 4.
Fig. 4.

(a)–(f) Selected sequence from a 3D DIC axial scan with a step of 200nm of 6 beads trapped by the laser. The imaging plane position, zIP , in respect to the coverslip and the trapping plane position, z, which compensate for the objective movements, are indicated in the figure. As a results of the compensation, the circle is kept at a fixed high, z 0=4.6 µm, from the coverslip. For the whole optical sectioning see Multimedia file 1. (1622 KB)

Fig. 5.
Fig. 5.

Sequence of (a) transmission and (b) fluorescence images (step of 1µm) acquired during an axial scan where a circle of 6 beads is positioned and held on the dorsal cortex of a HeLa cell. The beads are kept at a fixed position while the objective scans a range of 8.2 µm, at step of 200 nm. Fluorescence images have been de-convoluted as explained in the text. For the whole fluorescence sectioning see Multimedia file 2 (3146 KB)

Fig. 6.
Fig. 6.

(a)–(f) Selection of 6 cross sections, at step of 1 µm, of an optical sectioning of the 3D structure shown in Fig. 2. The positions, zIP , of the image plane in respect to the coverslip are indicated in the figure. In the original scan images are taken form zIP =12.6 µm to zIP =7.4 µm a step of 200 nm. For the whole optical sectioning see Multimedia file 3 (877 KB)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

zz * = f MO 2
z * = f SLM + f MO d .
f SLM = d f MO f MO 2 z ,

Metrics