Abstract

A new method to perform simultaneously three dimensional optical sectioning and optical manipulation is presented. The system combines a multi trap optical tweezers with a video microscope to enable axial scanning of living cells while maintaining the trapping configuration at a fixed position. This is achieved compensating the axial movement of the objective by shaping the wave front of the trapping beam with properly diffractive optical elements displayed on a computer controlled spatial light modulator. Our method has been validated in three different experimental configurations. In the first, we decouple the position of a trapping plane from the axial movements of the objective and perform optical sectioning of a circle of beads kept on a fixed plane. In a second experiment, we extend the method to living cell microscopy by showing that mechanical constraints can be applied on the dorsal surface of a cell whilst performing its fluorescence optical sectioning. In the third experiment, we trapped beads in a three dimensional geometry and perform, always through the same objective, an axial scan of the volume delimited by the beads.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.W. Paddock, “Confocal laser scanning microscopy,” BioTechniques 27, 992 (1999).
    [PubMed]
  2. D.W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66 (1999).
    [CrossRef] [PubMed]
  3. M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
    [CrossRef] [PubMed]
  4. F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
    [CrossRef] [PubMed]
  5. M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144
  6. David G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  7. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517 (1987).
    [CrossRef] [PubMed]
  8. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
    [CrossRef]
  9. A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).
  10. O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
    [CrossRef] [PubMed]
  11. K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell  77, 773–784 (1994).
  12. J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
    [CrossRef]
  13. D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).
  14. C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
    [CrossRef] [PubMed]
  15. M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
    [CrossRef] [PubMed]
  16. M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
    [CrossRef]
  17. V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).
  18. G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).
  19. K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
    [CrossRef] [PubMed]
  20. V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
    [CrossRef] [PubMed]
  21. E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [CrossRef]
  22. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
    [CrossRef] [PubMed]
  23. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
    [CrossRef] [PubMed]
  24. D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
    [CrossRef]
  25. K. T. Gahagan and Jr G.A. Swartzlander “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef] [PubMed]
  26. J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  27. P. J. Rodrigo, V. R. Daria, and J. Gluckstad “ Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,” Opt. Express12, 1417–1425 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417
    [CrossRef] [PubMed]
  28. G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
    [CrossRef]
  29. M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
    [CrossRef]
  30. M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
    [CrossRef]
  31. A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
    [CrossRef]
  32. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
    [CrossRef] [PubMed]
  33. B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
    [CrossRef] [PubMed]
  34. E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
    [CrossRef] [PubMed]

2005 (1)

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

2004 (4)

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
[CrossRef]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

2003 (2)

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

David G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[CrossRef] [PubMed]

2002 (4)

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
[CrossRef] [PubMed]

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

2001 (3)

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

1999 (3)

S.W. Paddock, “Confocal laser scanning microscopy,” BioTechniques 27, 992 (1999).
[PubMed]

D.W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66 (1999).
[CrossRef] [PubMed]

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

1997 (1)

D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).

1996 (1)

1995 (1)

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

1994 (1)

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell  77, 773–784 (1994).

1993 (1)

K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517 (1987).
[CrossRef] [PubMed]

Alderson, N. B.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Altissimo, M.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517 (1987).
[CrossRef] [PubMed]

Bastianes, P. I.

F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

Bershadsky, A.

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell  77, 773–784 (1994).

Block, S.M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Brakenhoff, G.

K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Burns, J.E.

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

Cabrini, S.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Choquet, D.

M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
[CrossRef]

D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).

Chow, R.H.

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Cojoc, D.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Coppey-Moisan, M.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).

Courtial, J.

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Daria, V. R.

P. J. Rodrigo, V. R. Daria, and J. Gluckstad “ Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,” Opt. Express12, 1417–1425 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417
[CrossRef] [PubMed]

Dearing, M. T.

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Del Pozo, M. A.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Dholakia, K.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Di Fabrizio, E.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Dufresne, E.

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Durieux, C.

V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517 (1987).
[CrossRef] [PubMed]

Emiliani, V.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

Enger, J.

M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
[CrossRef]

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

Engh, A. M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Ericsson, M.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

Facci, P.

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Felsenfeld, D.

D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).

Ferrari, E.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

Fordyce, P. M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Funatsu, T.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Gahagan, K. T.

Galbraith, C. G.

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
[CrossRef] [PubMed]

Gallet, F.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

Garbin, V.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

Geiger, B.

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

Gerbal, F.

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

Gluckstad, J.

P. J. Rodrigo, V. R. Daria, and J. Gluckstad “ Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,” Opt. Express12, 1417–1425 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417
[CrossRef] [PubMed]

Goksor, M.

M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
[CrossRef]

Greulich, K. O.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Grier, D.

J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Grier, D. G.

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Grier, David G.

David G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[CrossRef] [PubMed]

Hagberg, P.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

Hahn, K. M.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Hanstorp, D.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

Hanstrop, D.

M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
[CrossRef]

Henon, S.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

Higuchi, H.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Hoffmann, A.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Ishijima, A.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Jordan, P.

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

Kaulich, B.

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Kendrick-Jones, J.

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

Kiosses, W. B.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Kocian, P.

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

Kojima, H.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Kottelat, A.

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

Krol, J. J.

K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Laczik, Z. J.

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

Lambert, M.

M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
[CrossRef]

Lang, M. J.

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Leach, J.

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

Lenormand, G.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

Loerke, D.

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Malureanu, R.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

McGloin, D.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Mege, R. M.

M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
[CrossRef]

Meister, J. J.

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

Meller, N.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Melville, H.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Meyer zu Hörste, G.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Milne, G. F.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Molloy, J. E.

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

Monajembashi, S.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Neuman, K.C.

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Nystrom, T.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

Oheim, M.

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Paddock, S.W.

S.W. Paddock, “Confocal laser scanning microscopy,” BioTechniques 27, 992 (1999).
[PubMed]

Padgett, M.

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

Padgett, M. J.

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

Pankov, R.

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

Pilarczyk, G.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Piston, D.W.

D.W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66 (1999).
[CrossRef] [PubMed]

Richert, A.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

Rodrigo, P. J.

P. J. Rodrigo, V. R. Daria, and J. Gluckstad “ Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,” Opt. Express12, 1417–1425 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417
[CrossRef] [PubMed]

Sanvitto, D.

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

Schwartz, M. A.

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Sheets, S. A.

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Sheetz, M. P.

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
[CrossRef] [PubMed]

D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).

Sibbett, W.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Simeon, J.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

Sinclair, G.

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

Spalding, G. C.

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

Stuhmer, W.

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Susini, J.

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell  77, 773–784 (1994).

Swartzlander, Jr G.A.

Tanaka, H.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Thoumine, O.

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

Tokunaga, M.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Tramier, M.

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

Tregear, R. T.

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

Uhl, V.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Verveer, P. J.

F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

White, D.C.

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

Wilhein, T.

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Wouters, F. S.

F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

Yamada, K. M.

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
[CrossRef] [PubMed]

Yanagida, T.

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

Ymada, K. M.

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

Zacharia, R.

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

Zahid, M.

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

Appl. Optics (1)

M. Goksor, J. Enger, and D. Hanstrop “Optical manipulation in combination of single-cell studies,” Appl. Optics 43, 4831–4837 (2004).
[CrossRef]

Appl. Phys. B (1)

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich “Optical tweezers for confocal microscopy,” Appl. Phys. B 71, 747–753 (2000).
[CrossRef]

Biorheology (1)

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet “Elasticity of the human red blood cell skeleton,” Biorheology 40, 247–251 (2003).

BioTechniques (1)

S.W. Paddock, “Confocal laser scanning microscopy,” BioTechniques 27, 992 (1999).
[PubMed]

Cytometry (1)

K. Visscher, G. Brakenhoff, and J. J. Krol “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

O. Thoumine, P. Kocian, A. Kottelat, and J. J. Meister, “Short-Term binding of fibroblast to fibronectin: optical tweezers experiments and probabilistic analysis,” Eur. Biophys. J. 29, 398–408 (2000).
[CrossRef] [PubMed]

J. Bacteriology (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacteria viability with optical tweezers,” J. Bacteriology 182, 5551 (2000).
[CrossRef]

J. Cell Biol. (2)

C. G. Galbraith, K. M. Yamada, and M. P. Sheetz, “The relationship between force and focal complex development,” J. Cell Biol. 159, 695–705 (2002).
[CrossRef] [PubMed]

M. Lambert, D. Choquet, and R. M. Mege, “Dynamics of ligand-induced Rac1-dependent anchoring of cadherins to the actin cytoskeleton,” J. Cell Biol. 3, 469–479 (2002).
[CrossRef]

J. of Mod. Optics (1)

G. Sinclair, P. Jordan, J. Leach, and M. J. Padgett “Defining the trapping limits of holographical optical tweezers,” J. of Mod. Optics 51, 409–414 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Cojoc, V. Emiliani, E. Ferrari, R. Malureanu, S. Cabrini, R. Zacharia, and E. Di Fabrizio “Multiple optical trapping by means of diffractive optical elements,” Jpn. J. Appl. Phys. 43, 3910–3915 (2004).
[CrossRef]

Microscopy research and technique (1)

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo “Microscopy of biological sample through advanced diffractive optics from visible to X-Ray wavelength regime,” Microscopy research and technique 65, 252–262 (2005).
[CrossRef] [PubMed]

Nat. Meth. (1)

M. J. Lang, P. M. Fordyce, A. M. Engh, K.C. Neuman, and S.M. Block “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Meth. 22, 133–139 (2004).
[CrossRef]

Nat. Rev. Mol. Cell Biol. (1)

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Ymada “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
[CrossRef] [PubMed]

Nature (2)

J. E. Molloy, J.E. Burns, J. Kendrick-Jones, R. T. Tregear, and D.C. White, “Movement and force produced by a single myosin head,” Nature 378, 709–212 (1995).
[CrossRef]

David G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003).
[CrossRef] [PubMed]

Nature Cell Biol. (1)

M. A. Del Pozo, W. B. Kiosses, N. B. Alderson, N. Meller, K. M. Hahn, and M. A. Schwartz, “Intergin regulate GTP-Rac localized effector interaction through dissociation of Rho-GDI,” Nature Cell Biol. 4, 232–239 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

M. Oheim, D. Loerke, R.H. Chow, and W. Stuhmer, “Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 307 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517 (1987).
[CrossRef] [PubMed]

Trends Cell Biol. (2)

F. S. Wouters, P. J. Verveer, and P. I. Bastianes, “Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203 (2001).
[CrossRef] [PubMed]

D.W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9, 66 (1999).
[CrossRef] [PubMed]

Other (10)

M. Tramier, D. Sanvitto, V. Emiliani, C. Durieux, and M. Coppey-Moisan . “FRET and fluorescence lifetime imaging microscopy,” in Live Cell Imaging: A laboratory Manual, R. D. Goldman and D. L. Spector, eds. (CSHL Press, New York, 2004), 127–144

A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell 92, 161 (1998).

V. Emiliani, D. Sanvitto, C. Durieux, and M. Coppey-Moisan “Integrin-cytoskeleton interaction investigated by multi force multi trap optical tweezers,” submitted (2005).

D. Choquet, D. Felsenfeld, and M. P. Sheetz, “ Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages,” Cell  88, 39–48 (1997).

K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell  77, 773–784 (1994).

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express11, 3562–3567 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, and Z. J. Laczik “Assembly of 3 dimensional structures using programmable holographic optical tweezers,” Opt. Express12, 5475–5480 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5475
[CrossRef] [PubMed]

V. Emiliani, D. Sanvitto, M. Zahid, F. Gerbal, and M. Coppey-Moisan “Multi Force optical tweezers to generate gradients of force,” Opt. Express12, 3906–3910 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3906
[CrossRef] [PubMed]

P. J. Rodrigo, V. R. Daria, and J. Gluckstad “ Real-time interactive optical micromanipulation of a mixture of high- and low- index particles,” Opt. Express12, 1417–1425 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1417
[CrossRef] [PubMed]

E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein “Diffractive optical elements for differential interference contrast X-ray microscopy,” Opt. Express11, 2278–2288 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2278
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: AVI (1622 KB)     
» Media 2: AVI (3146 KB)     
» Media 3: AVI (876 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the trapping (red) and the imaging (green) beam paths. L - laser, SLM - spatial light modulator, DM - infrared dichroic mirror, MO - microscope objective, TL - tube lens, T - telescope; (b) Calibration curve which relates the SLM focal length, fSLM, to the axial position, z, of the trapping plane.

Fig. 2.
Fig. 2.

Transmission image of a 3D structure of beads trapped in three planes at an axial distance of 2 µm. The imaging plane is adjusted at z1=9.6µm, so that the intermediate plane of the structure results in focus.

Fig. 3.
Fig. 3.

Relative positions (not in scale) of the trapping, imaging and objective planes with respect to the coverslip and the objective focal plane during an axial scan.

Fig. 4.
Fig. 4.

(a)–(f) Selected sequence from a 3D DIC axial scan with a step of 200nm of 6 beads trapped by the laser. The imaging plane position, zIP , in respect to the coverslip and the trapping plane position, z, which compensate for the objective movements, are indicated in the figure. As a results of the compensation, the circle is kept at a fixed high, z 0=4.6 µm, from the coverslip. For the whole optical sectioning see Multimedia file 1. (1622 KB)

Fig. 5.
Fig. 5.

Sequence of (a) transmission and (b) fluorescence images (step of 1µm) acquired during an axial scan where a circle of 6 beads is positioned and held on the dorsal cortex of a HeLa cell. The beads are kept at a fixed position while the objective scans a range of 8.2 µm, at step of 200 nm. Fluorescence images have been de-convoluted as explained in the text. For the whole fluorescence sectioning see Multimedia file 2 (3146 KB)

Fig. 6.
Fig. 6.

(a)–(f) Selection of 6 cross sections, at step of 1 µm, of an optical sectioning of the 3D structure shown in Fig. 2. The positions, zIP , of the image plane in respect to the coverslip are indicated in the figure. In the original scan images are taken form zIP =12.6 µm to zIP =7.4 µm a step of 200 nm. For the whole optical sectioning see Multimedia file 3 (877 KB)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

zz * = f MO 2
z * = f SLM + f MO d .
f SLM = d f MO f MO 2 z ,

Metrics