Abstract

We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 µm and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. M. Rollins, S. Yazdanfar, M. D. Kulkarni, R. U.-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219-229 (1998). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>
    [CrossRef] [PubMed]
  3. C. Froehly, B. Colombeau, and M. Vampouille, in Progress In Optics v. 20, ed. E. Wolf (North Holland, Amstredam, 1983), pp. 63-153.
    [CrossRef]
  4. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  5. J. Ballif, R. Gianotti, Ph. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757-759 (1997).
    [CrossRef] [PubMed]
  6. C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: a new technique,” Opt. Lett. 22, 665-667 (1997).
    [CrossRef] [PubMed]
  7. A. M. Rollins, R. U.-Arunyawee, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., J. A. Izatt, “Realtime in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358-1360 (1999).
    [CrossRef]
  8. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Electron. Lett. 35, 1404-1406 (1999).
    [CrossRef]
  9. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological Images using optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996).
    [CrossRef] [PubMed]
  10. V. M. Gelikonov, A. M. Sergeev, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, “Compact Fast-Scanning OCT Device for In Vivo Biotissue Imaging,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1996), pp.58-59.
  11. B. H. Lee, T.-J. Eom, E. Choi, Y.-J. Kim, C. Lee, “All fiber delay line for OCT based on fiber gratings,” in Asian Symposium on Biomedical Optics and Photomedicine (BOPM 2002), TB2-1 (Optical Society of America, SPIE, Sapporo, 2002), pp.140-141.
  12. B. H. Lee, T.-J. Eom, E. Choi, G. Mudhana, C. Lee, “Novel Optical Delay Line for Optical Coherence Tomography System,” Opt. Rev. 10, 572-575 (2003).
    [CrossRef]
  13. C. Yang, S. Yazdanfar, and J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29, 685-687 (2004).
    [CrossRef] [PubMed]
  14. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [CrossRef] [PubMed]
  15. R. Kashyap, Fiber Bragg gratings (Academic Press, New York, 1999), pp.311-354.
    [CrossRef]
  16. Y. Pan, J. Welzel, R. Bringruber, and R. Engelhardt, “Optical coherence-gated imaging of biomedical tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029-1034 (1996).
    [CrossRef]
  17. P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” App. Opt. 2, 640-648 (2003).
    [CrossRef]
  18. W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” in Distributed and Multiplexed Fiber optic Sensors, Donald C. O'Shea, ed., Proc. SPIE 1586, 216-224 (1991).
  19. T. Imai, T. Komukai, and M. Nakazawa, “Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient,” IEEE Photon. Technol. Lett. 10, 845–847 (1998).
    [CrossRef]
  20. J. Kim, J. Bae, Y.-G. Han, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings Without Central Wavelength Shift,” IEEE Photon. Technol. Lett. 16, 849–851 (2004).
    [CrossRef]
  21. M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, and S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC (2003).
  22. P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, “Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction,” Opt. Express 12, 2676- 2687 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2676">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2676</a>
    [CrossRef] [PubMed]

App. Opt. (1)

P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” App. Opt. 2, 640-648 (2003).
[CrossRef]

Electron. Lett. (1)

K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Electron. Lett. 35, 1404-1406 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Pan, J. Welzel, R. Bringruber, and R. Engelhardt, “Optical coherence-gated imaging of biomedical tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1029-1034 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Imai, T. Komukai, and M. Nakazawa, “Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient,” IEEE Photon. Technol. Lett. 10, 845–847 (1998).
[CrossRef]

J. Kim, J. Bae, Y.-G. Han, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Effectively Tunable Dispersion Compensation Based on Chirped Fiber Bragg Gratings Without Central Wavelength Shift,” IEEE Photon. Technol. Lett. 16, 849–851 (2004).
[CrossRef]

OFC (1)

M. Sumetsky, P. S. Westbrook, P. I. Reyes, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, F. Rosca, J. Bennike, F. Liu, and S. Dey, “Reduction of chirped fiber grating group delay ripple penalty through UV post processing,” Optical Fiber Communication Conference Postdeadline Papers PD28-1, OSA, Washington DC (2003).

Opt. Express (2)

Opt. Lett. (7)

C. Yang, S. Yazdanfar, and J. Izatt, “Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings,” Opt. Lett. 29, 685-687 (2004).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).
[CrossRef] [PubMed]

C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: a new technique,” Opt. Lett. 22, 665-667 (1997).
[CrossRef] [PubMed]

J. Ballif, R. Gianotti, Ph. Chavanne, R. Walti, and R. P. Salathe, “Rapid and scalable scans at 21m/s in optical low-coherence reflectometry,” Opt. Lett. 22, 757-759 (1997).
[CrossRef] [PubMed]

A. M. Rollins, R. U.-Arunyawee, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., J. A. Izatt, “Realtime in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358-1360 (1999).
[CrossRef]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological Images using optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996).
[CrossRef] [PubMed]

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[CrossRef] [PubMed]

Opt. Rev. (1)

B. H. Lee, T.-J. Eom, E. Choi, G. Mudhana, C. Lee, “Novel Optical Delay Line for Optical Coherence Tomography System,” Opt. Rev. 10, 572-575 (2003).
[CrossRef]

OSA Technical Digest Series (1)

V. M. Gelikonov, A. M. Sergeev, G. V. Gelikonov, F. I. Feldchtein, N. D. Gladkova, J. Ioannovich, K. Fragia, and T. Pirza, “Compact Fast-Scanning OCT Device for In Vivo Biotissue Imaging,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.,1996), pp.58-59.

Proc. SPIE (1)

W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg gratings sensors,” in Distributed and Multiplexed Fiber optic Sensors, Donald C. O'Shea, ed., Proc. SPIE 1586, 216-224 (1991).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (3)

C. Froehly, B. Colombeau, and M. Vampouille, in Progress In Optics v. 20, ed. E. Wolf (North Holland, Amstredam, 1983), pp. 63-153.
[CrossRef]

R. Kashyap, Fiber Bragg gratings (Academic Press, New York, 1999), pp.311-354.
[CrossRef]

B. H. Lee, T.-J. Eom, E. Choi, Y.-J. Kim, C. Lee, “All fiber delay line for OCT based on fiber gratings,” in Asian Symposium on Biomedical Optics and Photomedicine (BOPM 2002), TB2-1 (Optical Society of America, SPIE, Sapporo, 2002), pp.140-141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) The schematic of a linearly chirped FBG and (b) the measured reflectivity and the group delay of the CFBGs used in the experiment.

Fig. 2.
Fig. 2.

The dispersion cancellation scheme in a pair of CFBGs cascaded reversely.

Fig. 3.
Fig. 3.

The schematic of the proposed AFODL

Fig. 4.
Fig. 4.

A fiber stretching assembly driven by a PZT (red box) and an implemented AFODL (blue box) using fiber optic components such as fiber gratings, coupler, and circulators.

Fig. 5.
Fig. 5.

The measured group delay for each CFBG and the cascaded CFBGs

Fig. 6.
Fig. 6.

(a) A shift of group delay induced by strain on a CFBG. The dispersion slope was not changed. (b) An amplified optical delay length of 2.5 mm obtained by stretching by 100 µm.

Fig. 7.
Fig. 7.

Optical delay length measured with respect to the voltage applied on the PZT.

Fig. 8.
Fig. 8.

(a) The interferogram of a single mirror surface. (b) The OCT image of a cover glass having a thickness of 100 µm. Both figures were taken by utilizing the proposed delay line.

Fig. 9.
Fig. 9.

(a) Cross-sectional photo image of a molar. (b) Its OCT image taken by utilizing the proposed AFODL. Pixel size and resolution are 500×5,000 and 10×100 µm, respectively.

Fig. 10.
Fig. 10.

(a) OCT image for the cornea of a fish eye and (b) the iris of the same sample.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λ B ( z ) = 2 n eff Λ ( z ) .
λ B ( z ) = 2 n eff ( Λ 0 + β z ) ,
Λ ( z ) = α Λ 0 + β z .
n eff = n eff ( 1 p e ε ) .
λ B ( z ) = 2 n eff Λ ( z ) = 2 n ( 1 p e ε ) ( α Λ 0 + β z ) .
O P L = n z = n ( 1 p e ε ) 1 β { ( λ B 2 n ( 1 p e ε ) ) α Λ 0 } .
O P L = n ( 1 p e ε ) 1 β { ( Λ 0 + β z 1 p e ε ) ( 1 + ε ) Λ 0 } .
O P L = n z = n z n Λ 0 β ( 1 p e ) ε + O ( ε 2 ) .
2 · O P D = 2 ( n z n z ) 2 n Λ 0 β ( 1 p e ) ε .
β = Λ m Λ 0 L = λ m λ 0 2 n L = Δ λ 2 n L ,
2 · O P D 2 n λ 0 Δ λ ( 1 p e ) a .
γ n ( 1 p e ) λ 0 Δ λ .

Metrics