Abstract

We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.W. Lou, T.F. Carruthers, M. Currie, “4/spl times/10 GHz mode-locked multiple-wavelength fiber laser,” IEEE Photon. Technol. Lett. 16, 51–53, (2004)
    [CrossRef]
  2. S. W. Chan and C. Shu, “Harmonically mode-locked fiber laser with optically selectable wavelength,” IEEE Photon. Technol. Lett. 14, 771–773, (2002)
    [CrossRef]
  3. L. Turi and F. Krausz, “Amplitude modulation mode locking of lasers by regenerative feedback,” Appl. Phys. Lett. 58, 810–812, (1991)
    [CrossRef]
  4. M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603-1605, (1994).
    [CrossRef]
  5. E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11, 1587–1589, (1999).
    [CrossRef]
  6. K.K. Gupta, “Pulse repetition frequency doubling in the regeneratively mode-locked fibre ring lasers,” Microwave Conference, 2000 Asia-Pacific , 561-564, (2000).
  7. G. H. Zhu, Q. Wang; H. M. Chen; H. Dong; N.K. Dutta, “High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser,” IEEE J. Quantum Electron. 40, 721-725, (2004)
    [CrossRef]
  8. K.S. Abedin, N. Onodera, M. Hyodo, “Beat-spectrum tailoring of fiber lasers using an intracavity Fabry- Perot filter for regenerative and harmonic mode-locking,” IEEE Photon. Technol. Lett. 11, 800–802, (1999).
    [CrossRef]
  9. J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, K. Yvind, “A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006, (2002).
    [CrossRef]
  10. Lasri, J.; Devgan, P.; Renyong Tang; Kumar, P. “Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator,” IEEE Photon. Technol. Lett. 16, 263-265, (2004).
    [CrossRef]
  11. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174, (1989).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 9.

Appl. Phys. Lett.

L. Turi and F. Krausz, “Amplitude modulation mode locking of lasers by regenerative feedback,” Appl. Phys. Lett. 58, 810–812, (1991)
[CrossRef]

Electron. Lett.

M. Nakazawa, E. Yoshida, Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre ring laser,” Electron. Lett. 30, 1603-1605, (1994).
[CrossRef]

IEEE J. Quantum Electron.

G. H. Zhu, Q. Wang; H. M. Chen; H. Dong; N.K. Dutta, “High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser,” IEEE J. Quantum Electron. 40, 721-725, (2004)
[CrossRef]

IEEE Photon. Technol. Lett.

K.S. Abedin, N. Onodera, M. Hyodo, “Beat-spectrum tailoring of fiber lasers using an intracavity Fabry- Perot filter for regenerative and harmonic mode-locking,” IEEE Photon. Technol. Lett. 11, 800–802, (1999).
[CrossRef]

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, K. Yvind, “A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006, (2002).
[CrossRef]

Lasri, J.; Devgan, P.; Renyong Tang; Kumar, P. “Ultralow timing jitter 40-Gb/s clock recovery using a self-starting optoelectronic oscillator,” IEEE Photon. Technol. Lett. 16, 263-265, (2004).
[CrossRef]

E. Yoshida, N. Shimizu, M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11, 1587–1589, (1999).
[CrossRef]

J.W. Lou, T.F. Carruthers, M. Currie, “4/spl times/10 GHz mode-locked multiple-wavelength fiber laser,” IEEE Photon. Technol. Lett. 16, 51–53, (2004)
[CrossRef]

S. W. Chan and C. Shu, “Harmonically mode-locked fiber laser with optically selectable wavelength,” IEEE Photon. Technol. Lett. 14, 771–773, (2002)
[CrossRef]

J. Lightwave Technol.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7, 171–174, (1989).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 9.

K.K. Gupta, “Pulse repetition frequency doubling in the regeneratively mode-locked fibre ring lasers,” Microwave Conference, 2000 Asia-Pacific , 561-564, (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Brillouin-gain spectra of the three different types of fibers at a pump wavelength of 1556.0 nm.

Fig. 2.
Fig. 2.

Experimental setup on the self-starting optical pulse source. DCF: Dispersion compensating fiber; DSF: dispersion shifted fiber; EML: Electro-absorption modulator integrated distributed-feedback laser diode module; EAM: Electro-absorption modulator; EDFA: Erbium doped fiber amplifier; ISO: isolator; PC: Polarization controller; PS: Power splitter; SMF: Standard single mode fiber.

Fig. 3.
Fig. 3.

a) Output pulse trains generated using 1-km DCF (top), 12-km DSF (middle), and 2.6 km SMF (bottom) (b) the corresponding optical spectra for the output pulse trains.

Fig. 4.
Fig. 4.

a) RF spectra showing the mixing of the pump and the Stokes waves to generate frequency components at 9.76 GHz (top), 10.49 GHz (middle), and 10.71 GHz. (b) The RF spectra of the corresponding output pulse trains

Fig. 5.
Fig. 5.

The spectrum of (a) the input signal and (b) the fundamental frequency of the output signal measured at a resolution bandwidth of 300 kHz.

Fig. 6.
Fig. 6.

The peak power and the width of the output pulses generated with (a) DSF, (b) DCF, and (c) SMF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v B = Ω B 2 π = 2 n v A λ p

Metrics