Abstract

Supercontinuum-based multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy has been applied to vibrational imaging of a living fission yeast cell. We have successfully extracted only a vibrationally resonant CARS image from a characteristic spectral profile in the C-H stretching vibrational region. Using our simple but sensitive analysis, the vibrational contrast is significantly improved in comparison with a CARS imaging at a fixed Raman shift. The CARS image of a living yeast cell indicates several areas at which the signal is remarkably strong. They are considered to arise from mitochondria.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  2. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768–1770 (2000).
    [CrossRef]
  3. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
    [CrossRef] [PubMed]
  4. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
    [CrossRef]
  5. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
    [CrossRef] [PubMed]
  6. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
    [CrossRef] [PubMed]
  7. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
    [CrossRef]
  8. H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B B 80, 243–246 (2005).
    [CrossRef]
  9. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
    [CrossRef]
  10. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
    [CrossRef]
  11. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
    [CrossRef]
  12. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
    [CrossRef]
  13. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
    [CrossRef]
  14. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility chi(3) for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004).
    [CrossRef]
  15. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29, 2701–2703 (2004).
    [CrossRef] [PubMed]
  16. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. (accepted).
    [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  18. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
    [CrossRef]
  19. M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
    [CrossRef]
  20. H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
    [CrossRef] [PubMed]
  21. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
    [CrossRef]
  22. T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
    [CrossRef]
  23. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  24. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
    [CrossRef]
  25. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
    [CrossRef]
  26. Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
    [CrossRef]
  27. Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
    [CrossRef]

2005 (1)

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B B 80, 243–246 (2005).
[CrossRef]

2004 (10)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility chi(3) for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29, 2701–2703 (2004).
[CrossRef] [PubMed]

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

2003 (3)

2002 (5)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[CrossRef]

2001 (3)

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
[CrossRef]

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
[CrossRef]

2000 (3)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Araki, T.

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
[CrossRef]

Chai, L.

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
[CrossRef]

Cicerone, M. T.

Evans, C. L.

Greve, J.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B B 80, 243–246 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[CrossRef]

H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. (accepted).
[PubMed]

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768–1770 (2000).
[CrossRef]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Hilligsoe, K. M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Hu, M. L.

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Huang, Y.-S.

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[CrossRef]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Imura, K.

T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
[CrossRef]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

Jia, Y. K.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

Kano, H.

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B B 80, 243–246 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. (accepted).
[PubMed]

Karashima, T.

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768–1770 (2000).
[CrossRef]

Kee, T. W.

Keiding, S. R.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Kruglik, S. G.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

Larsen, J. J.

Li, Y.

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Müller, M.

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[CrossRef]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[CrossRef]

Nagahara, T.

T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
[CrossRef]

Ogura, T.

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

Okamoto, H.

T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
[CrossRef]

Otto, C.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

Paulsen, H. N.

Potma, E. O.

Ranka, J. K.

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Schins, J. M.

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
[CrossRef]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[CrossRef]

Stentz, A. J.

Thogersen, J.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
[CrossRef]

Voroshilov, A.

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Wang, C. Y.

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

Wang, Z.

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Windeler, R. S.

Wurpel, G. W. H.

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[CrossRef]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility chi(3) for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yamamoto, M.

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[CrossRef]

Zheltikov, A. M.

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Zheng, G.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Appl. Phys. B B (1)

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B B 80, 243–246 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85, 4298–4300 (2004).
[CrossRef]

Biophys. J. (1)

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Direct measurement of chain order in single phospholipid mono- and bilayers with multiplex CARS,” J. Phys. Chem. B 108, 3400–3403 (2004).
[CrossRef]

J. Raman Spectrosc. (3)

Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[CrossRef]

Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[CrossRef]

C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive“microscopic” multiplex CARS technique,” J. Raman Spectrosc. 32, 495–501 (2001).
[CrossRef]

Opt. Exp. (2)

M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Exp. 12, 1932–1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932.
[CrossRef]

M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov “Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber,” Opt. Exp. 12, 6129–6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129.
[CrossRef]

Opt. Lett. (8)

H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility chi(3) for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29, 2701–2703 (2004).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
[CrossRef] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001).
[CrossRef]

M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768–1770 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801–220804 (2004).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901–023904 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Nagahara, K. Imura, and H. Okamoto, “Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber,” Rev. Sci. Instrum. 75, 4528–4533 (2004).
[CrossRef]

Other (1)

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. (accepted).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Typical spectral profile of the CARS signal of a living yeast cell (red solid) and surrounding water (blue dotted)

Fig. 2.
Fig. 2.

CARS lateral images of living yeast cells at the Raman shift of 2856 cm-1 (a) and 2200 cm-1 (b). The black and white crosses in (a) correspond to the positions at which the spectral profiles are shown in Fig. 1.

Fig. 3.
Fig. 3.

Vibrationally resonant CARS imaging using the differentiation method (a) and a method using a conventional lineshape function described in Eq. (1) (b). Note that the contrast and signal-to-noise ratio is dramatically improved in comparison with Fig. 2(a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = A NR e i ϕ + R A R Γ R Γ R i ( ω Ω R ) 2 .

Metrics