Abstract

We report an efficient red-shifted continuum generation of picosecond pulses in conventional optical fibers. By using a novel high-repetition rate, high-energy oscillator operating at the fundamental wavelength of 1064 nm, we achieved more than 60% of the output energy in the spectral range from 1150 to 1300 nm, perfectly suitable for broadband coherent anti-Stokes Raman spectroscopy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Hirschfeld, “Raman microprobe: vibrational spectroscopy in the femtogram range,” J. Opt. Soc. Am. 63, 476 (1973).
  2. J. R. Lakowicz, Principles of fluorescent spectroscopy (Plenum Press, New York, 1983).
    [CrossRef]
  3. B. S. Hudson, “New laser techniques for biophysical studies,” Ann. Rev. of Biophys. Bioengin. 6, 135-150 (1977).
    [CrossRef]
  4. T. Wilson, Confocal microscopy (Academic Press, London, 1990).
  5. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350-352 (1982).
    [CrossRef] [PubMed]
  6. A. Zumbusch, G. R. Holton, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  7. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. 98, 1577-1582 (2001).
    [CrossRef] [PubMed]
  8. M. Hashimoto, and T. Araki, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768-1770 (2000).
    [CrossRef]
  9. V. V. Yakovlev, “Real-time nonlinear Raman microscopy,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, V. S. Grundfest, D. A. Benaron, eds., Proc. SPIE 4254, 97-105 (2000).
  10. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093-1095 (2002).
    [CrossRef]
  11. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  12. V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957-964 (2003).
    [CrossRef]
  13. V. V. Yakovlev, “Broadband cost-effective nonlinear Raman microscopy,” in Multiphoton Microscopy in Biomedical Sciences IV, A. Periasamy, P. T. C. So, eds., Proc. SPIE 5323, 214-222 (2004)
  14. V. Tuchin, Tissue optics (SPIE Press, Bellingham, WA, USA, 2000).
  15. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113-115 (1999).
    [CrossRef]
  16. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotech. 17, 763-767 (1999).
    [CrossRef]
  17. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broad-band (1000 cm-1) multiplex CARS spectroscopy –application to polarization-sensitive and time-resolved measurements,” Appl. Phys. B 59, 369-375 (1994).
  18. V. H. Astinov, and G. M. Georgiev, “Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,” Appl. Phys. B 63, 62-68 (1996).
  19. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Near infrared continuum generation of femtosecond and picosecond pulses in doped optical fibers,” Appl. Phys. B 77, 219-226 (2003).
    [CrossRef]
  20. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Broadband nonlinear optical conversion of a highenergy diode-pumped picosecond laser,” Opt. Commun. 229, 441-445 (2004).
    [CrossRef]
  21. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191-195 (1988).
  22. A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645-1647 (1997).
    [CrossRef]
  23. R. R. Alfano, Ed. The supercontinuum laser source (Springer-Verlag, New York, 1989).
  24. E. M. Dianov, “Advances in Raman fibers,” J. Lightwave Technol. 20, 1457-1462 (2002).
    [CrossRef]
  25. D. I. Chang, S. V. Chernikov, M. J. Guy, J. R. Taylor, and H. J. Kong, “Efficient cascaded Raman generation and signal amplification at 1.3 µm in GeO2-doped single-mode fibre,” Opt. Commun. 142, 289-293 (1997).
    [CrossRef]
  26. H. S. Seo, and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145-151 (2000).
    [CrossRef]
  27. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, “Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502-509 (2002).
    [CrossRef] [PubMed]
  28. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
    [CrossRef]
  29. G. I. Petrov, S. Saltiel, R. D. Heathcote, and V. V. Yakovlev, “Nonlinear microscopy of cellular structures,” Las. Phys. Lett. 1, 10-15 (2004).
    [CrossRef]
  30. G. I. Petrov, V. Shcheslavskiy, L. Sona, and V. V. Yakovlev, “CARS-microscopy analysis of collagen transformation,” in Multiphoton Microscopy in Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds., Proc. SPIE 5700 (2005) In press.

Ann. Rev. of Biophys. Bioengin. (1)

B. S. Hudson, “New laser techniques for biophysical studies,” Ann. Rev. of Biophys. Bioengin. 6, 135-150 (1977).
[CrossRef]

Appl. Phys. B (4)

B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broad-band (1000 cm-1) multiplex CARS spectroscopy –application to polarization-sensitive and time-resolved measurements,” Appl. Phys. B 59, 369-375 (1994).

V. H. Astinov, and G. M. Georgiev, “Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,” Appl. Phys. B 63, 62-68 (1996).

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Near infrared continuum generation of femtosecond and picosecond pulses in doped optical fibers,” Appl. Phys. B 77, 219-226 (2003).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191-195 (1988).

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002).
[CrossRef]

Biophys. J. (1)

J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, “Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

T. Hirschfeld, “Raman microprobe: vibrational spectroscopy in the femtogram range,” J. Opt. Soc. Am. 63, 476 (1973).

J. Raman Spectrosc. (1)

V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957-964 (2003).
[CrossRef]

Las. Phys. Lett. (1)

G. I. Petrov, S. Saltiel, R. D. Heathcote, and V. V. Yakovlev, “Nonlinear microscopy of cellular structures,” Las. Phys. Lett. 1, 10-15 (2004).
[CrossRef]

Nat. Biotech. (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotech. 17, 763-767 (1999).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Commun. (3)

D. I. Chang, S. V. Chernikov, M. J. Guy, J. R. Taylor, and H. J. Kong, “Efficient cascaded Raman generation and signal amplification at 1.3 µm in GeO2-doped single-mode fibre,” Opt. Commun. 142, 289-293 (1997).
[CrossRef]

H. S. Seo, and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145-151 (2000).
[CrossRef]

G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Broadband nonlinear optical conversion of a highenergy diode-pumped picosecond laser,” Opt. Commun. 229, 441-445 (2004).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holton, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Proc. SPIE (3)

V. V. Yakovlev, “Real-time nonlinear Raman microscopy,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, V. S. Grundfest, D. A. Benaron, eds., Proc. SPIE 4254, 97-105 (2000).

V. V. Yakovlev, “Broadband cost-effective nonlinear Raman microscopy,” in Multiphoton Microscopy in Biomedical Sciences IV, A. Periasamy, P. T. C. So, eds., Proc. SPIE 5323, 214-222 (2004)

G. I. Petrov, V. Shcheslavskiy, L. Sona, and V. V. Yakovlev, “CARS-microscopy analysis of collagen transformation,” in Multiphoton Microscopy in Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds., Proc. SPIE 5700 (2005) In press.

Other (4)

R. R. Alfano, Ed. The supercontinuum laser source (Springer-Verlag, New York, 1989).

V. Tuchin, Tissue optics (SPIE Press, Bellingham, WA, USA, 2000).

J. R. Lakowicz, Principles of fluorescent spectroscopy (Plenum Press, New York, 1983).
[CrossRef]

T. Wilson, Confocal microscopy (Academic Press, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Laser set up. DL-diode laser, ND-Nd3+:YVO4 crystal, Ge/Si-mixed Ge/Si photodetector, SP-spectrometer, F-Faraday isolator, NLC-nonlinear optical crystal, AC-autocorrelator, AL-aspheric lens, 1-flat mirror (HR @ 1064 nm, HT @ 808 nm), 2-concave mirror (R=0.5 m; HR @ 1064 nm), 3-concave mirror (R=2.0 m; HR @ 1064 nm), 4-concave mirror (R=0.3 m; HR @ 1064 nm), 5-flat output coupler (HR @ 532 nm, T=78% @ 1064 nm). For simplicity a laser resonator with a single pass through the telescopic optics (3) is shown.

Fig. 2.
Fig. 2.

The development of the spectrum of white-light continuum generated in a 3-m-long GeO2 fiber as a function of the input energy.

Fig. 3.
Fig. 3.

The relative delay of arrival times of different spectral components of white-light continuum generated in a 3-m-long GeO2 fiber.

Fig. 4.
Fig. 4.

Broadband resonant CARS spectrum of a single 0.5-mm-diameter polystyrene sphere recorded under microscopic conditions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( t ) = ω 0 n 2 · L c d I ( t ) d t ,

Metrics