Abstract

A combination of direct current (d.c.) electric field and moderately elevated temperature is applied to a glass with embedded spherical silver nanoparticles in the near surface region. The field-assisted dissolution of silver nanoparticles leads to the formation of a layer of percolated silver clusters with modified optical properties beneath the glass surface. The distance between this produced buried layer and the surface of the sample can be controlled by the magnitude of the applied voltage. The same holds for the interferential colors observable in reflection. The presented technique is easy to implement and paves a route towards the engineering of the optical properties of metal-doped nanocomposite glasses via modification of the spatial distribution of metallic inclusions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, Berlin, 2001).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
    [Crossref]
  4. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
    [Crossref]
  5. F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
    [Crossref]
  6. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
    [Crossref]
  7. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).
  8. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
    [Crossref]
  9. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
    [Crossref]
  10. F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
    [Crossref]
  11. P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
    [Crossref]
  12. S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
    [Crossref]
  13. P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  14. F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York1998).
    [Crossref]
  15. G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

2001 (1)

F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
[Crossref]

1999 (2)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

1998 (1)

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

1996 (1)

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

1994 (1)

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
[Crossref]

1991 (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[Crossref]

1972 (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abdolvand, A.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Berg, K.-J.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[Crossref]

Berger, A.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[Crossref]

Bohren, F.

F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York1998).
[Crossref]

Bosbach, J.

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Carvalho, I.C.S.

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

Christy, R.W.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

Deparis, O.

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Fernandez Navarro, J.M.

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

Garcia, F.C.

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

Goldmann, A.

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Graener, H.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Hering, E.

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

Hofmeister, H.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[Crossref]

Huffman, D.R.

F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York1998).
[Crossref]

Jin, P.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Johnson, P.B.

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kaempfe, M.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

Kazansky, P. G.

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Kazansky, P.G.

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin1995).

Lesche, B.

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

Llopis, J.

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

Margulis, W.

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

Nakao, S.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Paje, S.E.

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

Podlipensky, A.

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

Rainer, T.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

Russel, P.St.J.

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
[Crossref]

Schatz, G.C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

Seifert, G.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, Berlin, 2001).

Stietz, F.

F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
[Crossref]

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Tazawa, M.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Träger, F.

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Villegas, M.A.

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin1995).

Wenzel, T.

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Xu, G.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

Appl. Phys. A (2)

F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
[Crossref]

S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[Crossref]

Appl. Phys. B (1)

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, and F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[Crossref]

Appl. Phys. Lett. (2)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[Crossref]

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric enviorment,” J. Phys. Chem. B 107, 668 (2003).
[Crossref]

Opt. Commun. (1)

P.G. Kazansky and P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
[Crossref]

Phys. Rev. B (1)

P.B. Johnson and R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Z. Phys. D (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[Crossref]

Other (6)

F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York1998).
[Crossref]

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, Berlin, 2001).

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky“Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett.85, 872 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Volume fill factor of silver in the nanocomposite samples, as obtained from SEM examination.

Fig. 2.
Fig. 2.

Photographs of the segment of the anodic surface of silver nanoparticles containing glass sample after treatment at 1kV, 250°C. Photographs were taken using a microscope spectrophotometer [MPM 800 D/UV, Zeiss] equipped with CCD camera in: (a) reflection and (b) transmission mode. Numbers (2–5) refer to locations where reflection spectra were measured (see Fig. 3).

Fig. 3.
Fig. 3.

(a) SEM picture of the surface of the sample taken in back scattered electron (BSE) regime (top view). Insets 1, 2 and 3 refer to locations in untreated region (location O in Fig. 2a), border region (location 1 in Fig.2a) and modified region (location 6 in Fig. 2a), respectively. (b) SEM picture of the cross section of the sample.

Fig. 4.
Fig. 4.

SEM pictures taken from the location of the first green ring (location 3 in Fig. 2(a)). Pictures a and b were taken after successive etching of the sample surface up to depths of approximately 400nm. Picture c is presented for comparison and shows the surface of the sample before etching. The picture in the middle shows a segment of the border region of the sample before and after etching.

Fig. 5.
Fig. 5.

Calculated reflectivity for interface between Maxwell-Garnett silver in glass nanocomposite and neat glass, with fill factor f as parameter

Fig. 6.
Fig. 6.

Preliminary results showing large-area coloration through electric-field-assisted production of a buried percolated silver layer; processing at (a) 200V and (b) 600 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R I = 1 2 · ( R 1 + R 2 + 2 R 1 R 2 ) .
ε eff ( ω ) = ε h ( ε i + 2 ε h ) + 2 f ( ε i ε h ) ( ε i + 2 ε h ) f ( ε i ε h ) , with ε i ( ω ) = ε b + 1 ω p 2 ω 2 + i γ ω .
n eff ( ω ) = ε eff ( ω )

Metrics