Abstract

A combination of direct current (d.c.) electric field and moderately elevated temperature is applied to a glass with embedded spherical silver nanoparticles in the near surface region. The field-assisted dissolution of silver nanoparticles leads to the formation of a layer of percolated silver clusters with modified optical properties beneath the glass surface. The distance between this produced buried layer and the surface of the sample can be controlled by the magnitude of the applied voltage. The same holds for the interferential colors observable in reflection. The presented technique is easy to implement and paves a route towards the engineering of the optical properties of metal-doped nanocomposite glasses via modification of the spatial distribution of metallic inclusions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin 1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, Berlin, 2001).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
    [CrossRef]
  4. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
    [CrossRef]
  5. F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
    [CrossRef]
  6. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
    [CrossRef]
  7. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).
  8. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B 108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett. 85, 872 (2004).
    [CrossRef]
  9. K.-J. Berg, A. Berger, H. Hofmeister, "Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
    [CrossRef]
  10. F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
    [CrossRef]
  11. P.G. Kazansky, P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
    [CrossRef]
  12. S.E. Paje, J. Llopis, M.A. Villegas, J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
    [CrossRef]
  13. P.B. Johnson, R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  14. F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York 1998).
    [CrossRef]
  15. G. Xu, M. Tazawa, P. Jin, S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Appl. Phys. A (4)

F. Stietz, “Laser manipulation of the size and shape of supported nanoparticles,” Appl. Phys. A 72, 381 (2001).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A (online first, 25 November 2004).

S.E. Paje, J. Llopis, M.A. Villegas, J.M. Fernandez Navarro, “Photoluminesence of a silver-doped glass,” Appl. Phys. A 63, 431 (1996).
[CrossRef]

G. Xu, M. Tazawa, P. Jin, S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A (online first, 28 January 2004).

Appl. Phys. B (1)

T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger, “Shaping nanoparticles and their optical spectra with photons,” Appl. Phys. B 69, 513 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200 (1999).
[CrossRef]

F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, B. Lesche, “Inducing a large second order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett. 72, 3252 (1998).
[CrossRef]

J. Phys. Chem. B (2)

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, P. G. Kazansky, “Dissolution of silver nanoparticles in glass through an intense DC electric field,” J. Phys. Chem. B 108(46), 17699(2004). Also see: O. Deparis, P.G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys, Lett. 85, 872 (2004).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[CrossRef]

Opt. Commun. (1)

P.G. Kazansky, P.St.J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611 (1994).
[CrossRef]

Phys. Rev. B (1)

P.B. Johnson, R.W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Z. Phys. D (1)

K.-J. Berg, A. Berger, H. Hofmeister, "Small silver particles in glass-surface layers produced by sodium-silver ion-exchange- their concentration and size depth profile,” Z. Phys. D 20, 309 (1991).
[CrossRef]

Other (3)

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, (Springer Series in Materials Science, Springer, Berlin 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media, (Springer, Berlin, 2001).

F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley Science Paperback Series, New York 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Volume fill factor of silver in the nanocomposite samples, as obtained from SEM examination.

Fig. 2.
Fig. 2.

Photographs of the segment of the anodic surface of silver nanoparticles containing glass sample after treatment at 1kV, 250°C. Photographs were taken using a microscope spectrophotometer [MPM 800 D/UV, Zeiss] equipped with CCD camera in: (a) reflection and (b) transmission mode. Numbers (2–5) refer to locations where reflection spectra were measured (see Fig. 3).

Fig. 3.
Fig. 3.

(a) SEM picture of the surface of the sample taken in back scattered electron (BSE) regime (top view). Insets 1, 2 and 3 refer to locations in untreated region (location O in Fig. 2a), border region (location 1 in Fig.2a) and modified region (location 6 in Fig. 2a), respectively. (b) SEM picture of the cross section of the sample.

Fig. 4.
Fig. 4.

SEM pictures taken from the location of the first green ring (location 3 in Fig. 2(a)). Pictures a and b were taken after successive etching of the sample surface up to depths of approximately 400nm. Picture c is presented for comparison and shows the surface of the sample before etching. The picture in the middle shows a segment of the border region of the sample before and after etching.

Fig. 5.
Fig. 5.

Calculated reflectivity for interface between Maxwell-Garnett silver in glass nanocomposite and neat glass, with fill factor f as parameter

Fig. 6.
Fig. 6.

Preliminary results showing large-area coloration through electric-field-assisted production of a buried percolated silver layer; processing at (a) 200V and (b) 600 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R I = 1 2 · ( R 1 + R 2 + 2 R 1 R 2 ) .
ε eff ( ω ) = ε h ( ε i + 2 ε h ) + 2 f ( ε i ε h ) ( ε i + 2 ε h ) f ( ε i ε h ) , with ε i ( ω ) = ε b + 1 ω p 2 ω 2 + i γ ω .
n eff ( ω ) = ε eff ( ω )

Metrics