Abstract

We report a high-energy femtosecond fiber amplifier based on an air-cladded single-transverse-mode erbium-ytterbium-codoped photonic-crystal fiber with a 26-µm mode-field-diameter. 700-fs, 47-MHz pulses at 1557 nm were amplified and compressed to near-transform-limited 100-fs, 7.4-nJ pulses with 54-kW peak powers without chirped-pulse amplification. A linearly polarized output with an extinction ratio exceeding 42 dB was obtained by double-pass configuration. As an application, supercontinuum spanning from 1000 to 2500 nm was generated by a successive 2-m high-nonlinear fiber with a 140-mW average power.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52-54 (1998).
    [CrossRef]
  2. M. Hofer, M. E. Fermann, A. Galvanauskaus, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium-ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840-1842 (1998).
    [CrossRef]
  3. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  4. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  7. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved largemode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28, 393-395 (2003).
    [CrossRef] [PubMed]
  8. W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, “Yb3+-doped photonic crystal fiber laser,” Electron. Lett. 36, 1452-1453 (2000).
    [CrossRef]
  9. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Exp. 9, 714-720 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714</a>
    [CrossRef]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jacobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a>
    [CrossRef] [PubMed]
  11. J. Limpert, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, Ch. Jacobsen, H. Simonsen, and N. A. Mortensen, “Extended large-mode-area single-mode microstructured fiber laser,” Proc. Conf. on Lasers and Electro-Optics 2004, San Francisco, 2004, paper CMS6.
  12. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jacobsen, “Low-nonlinearlity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12, 1313-1319 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>
    [CrossRef] [PubMed]
  13. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159-163 (2003).
    [CrossRef]
  14. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Tech. Lett. 16, 1825-1827 (2004).
    [CrossRef]
  15. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, “Singlemode photonic crystal fibre with effective area of 600 m2 and low bending loss,” Electron. Lett. 39, 1802-1803 (2003).
    [CrossRef]
  16. D. J. Richardson, V. V. Afanasjev, A. B. Grudinin, and D. N. Payne, “Amplification of femtosecond pulses in a passive, all-fiber soliton source,” Opt. Lett. 17, 1596-1598 (1992).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics 2nd Ed. (Academic Press, New York, 1995), Chap. 5.
  18. M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, “Low-loss photonic crystal fibers for transmission systems and their dispersion properties,” Opt. Express 12, 1372-1376 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?"URI=OPEX-12-7-1372">http://www.opticsexpress.org/abstract.cfm?"URI=OPEX-12-7-1372</a>
    [CrossRef] [PubMed]
  19. R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  20. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Tech. Lett. 17, 37-39 (2005).
    [CrossRef]
  21. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832.</a>
    [CrossRef] [PubMed]
  22. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332</a>
    [CrossRef] [PubMed]
  23. G. Imeshev, I. Hartl, and M. E. Fermann, “An optimized Er gain band all-fiber chirped pulse amplification system,” Opt. Express 12, 6508-6514 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508</a>
    [CrossRef] [PubMed]
  24. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956-960 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
    [CrossRef] [PubMed]
  25. N. Nishizawa and T. Goto, “Widely-broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365-L367 (2001).
    [CrossRef]
  26. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express 12, 770-775 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770</a>
    [CrossRef] [PubMed]
  27. T. R. Schibli, K. Minoshima, F.L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467-2469 (2004).
    [CrossRef] [PubMed]

CLEO 2004

J. Limpert, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, Ch. Jacobsen, H. Simonsen, and N. A. Mortensen, “Extended large-mode-area single-mode microstructured fiber laser,” Proc. Conf. on Lasers and Electro-Optics 2004, San Francisco, 2004, paper CMS6.

Electron. Lett.

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, “Singlemode photonic crystal fibre with effective area of 600 m2 and low bending loss,” Electron. Lett. 39, 1802-1803 (2003).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, “Yb3+-doped photonic crystal fiber laser,” Electron. Lett. 36, 1452-1453 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

IEEE Photon. Tech. Lett.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Tech. Lett. 16, 1825-1827 (2004).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Tech. Lett. 17, 37-39 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

N. Nishizawa and T. Goto, “Widely-broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365-L367 (2001).
[CrossRef]

Opt. Commun.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium-ytterbium co-doped large-core fiber laser,” Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Opt. Exp.

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Exp. 9, 714-720 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-714</a>
[CrossRef]

Opt. Express

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jacobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818</a>
[CrossRef] [PubMed]

C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832.</a>
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332</a>
[CrossRef] [PubMed]

H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express 12, 770-775 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-770</a>
[CrossRef] [PubMed]

J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956-960 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956</a>
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jacobsen, “Low-nonlinearlity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express 12, 1313-1319 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1313</a>
[CrossRef] [PubMed]

M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, “Low-loss photonic crystal fibers for transmission systems and their dispersion properties,” Opt. Express 12, 1372-1376 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?"URI=OPEX-12-7-1372">http://www.opticsexpress.org/abstract.cfm?"URI=OPEX-12-7-1372</a>
[CrossRef] [PubMed]

G. Imeshev, I. Hartl, and M. E. Fermann, “An optimized Er gain band all-fiber chirped pulse amplification system,” Opt. Express 12, 6508-6514 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508</a>
[CrossRef] [PubMed]

Opt. Lett.

Rev. Sci. Instrum.

R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics 2nd Ed. (Academic Press, New York, 1995), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Microscope image of the cross section of the LMA Er:Yb PCF and (b) mode profile of the amplifier output. The experimental setup is shown in Fig. 2. The seed laser is a femtosecond Er-fiber laser/amplifier (IMRA B-60) where the 47-MHz repetition rate is highly stabilized as a frequency comb in the telecommunication band. It operated just below the significant nonlinearity distortion regime, with a 0.7-nJ pulse energy and 700-fs pulse width. The main fiber amplifier was formed with the LMA Er:Yb PCF. The launching efficiency of the seed to the core was about 70%. The fiber was cladding-pumped from the other side by a fiber-coupled laser diode at 975 nm. The fiber length was 9 m and ~90% of the pump power was absorbed. The fiber-coiling diameter was 32 cm and both fiber ends were cleaved facets and slightly angled. In order to obtain highly polarized output from the non-polarization maintaining (NPM) PCF, a double-pass configuration was used [2]. The horizontally polarized pulses were input and firstly amplified. The signal was then reflected by the Faraday-rotator and mirror placed in the pump end. The secondly amplified, vertically polarized pulses were output from the polarizing beam splitter (PBS) in the input end.

Fig. 2.
Fig. 2.

Experimental setup of the femtosecond fiber amplifier.

Fig. 3.
Fig. 3.

Pump-power dependence of the pulse energy (filled circles) and pulse width (sech2-fit, open circles) in single-pass (blue) and double-pass (red) amplification.

Fig. 4.
Fig. 4.

(a) Intensity autocorrelation traces and (b) spectra of the seed, single-pass and double-pass amplifier outputs. The filled black circles and bold red curve in (a) indicate the measured trace and the trace calculated from the intensity retrieved by FROG, respectively.

Fig. 5.
Fig. 5.

(a) Measured and (b) retrieved SHG FROG traces. (c) Retrieved temporal intensity (red) and phase (blue). (d) Retrieved spectral intensity (red) and phase (blue). The dashed curve indicates the measured spectrum.

Fig. 6.
Fig. 6.

Supercontinuum spectra from NPM-HN-DSF (red) and PM-HN-DSF (blue). The spectral intensity is calibrated.

Metrics