Abstract

Two optical transmitters are described, generating new modulation formats based on the simultaneous modulation of the amplitude and the phase of an optical signal. The proposed formats are compared to the traditional Non-Return-to-Zero (NRZ), showing improved tolerances to chromatic dispersion (CD), differential group delay (DGD) and to wavelength division multiplexing (WDM) channel spacing, and requiring electronics with halved bandwidth.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Ohm, J. Speidel, “Quaternary optical ASK-DPSK and receivers with direct detection,” IEEE Photon. Technol. Lett. 15, 159-161 (2003).
    [CrossRef]
  2. N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photon. Technol. Lett., 15, 760-762 (2003).
    [CrossRef]
  3. M. Zitelli, “Optical phase and intensity modulation using dark pulses,” IEEE Photon. Technol. Lett. 16, 1972-1974 (2004).
    [CrossRef]
  4. M. Zitelli, “Optical phase and intensity modulation with improved transmitters,” U.S. patent application 10/732,404, Dec. 11, 2003.
  5. S. Walklin, J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” IEEE J. Lightwave Technol. 17, 2235-2247 (1999).
    [CrossRef]
  6. “Optolink Software user documentation” (TelCon, 2004), <a href="http://www.tel-con.com/">http://www.tel-con.com/</a>
  7. G. Bosco, P. Poggiolini, “On the Q factor inaccuracy in the performance analysis of optical direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 16, 665-667 (2004).
    [CrossRef]

IEEE J. Lightwave Technol. (1)

S. Walklin, J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” IEEE J. Lightwave Technol. 17, 2235-2247 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

G. Bosco, P. Poggiolini, “On the Q factor inaccuracy in the performance analysis of optical direct-detection DPSK systems,” IEEE Photon. Technol. Lett. 16, 665-667 (2004).
[CrossRef]

M. Ohm, J. Speidel, “Quaternary optical ASK-DPSK and receivers with direct detection,” IEEE Photon. Technol. Lett. 15, 159-161 (2003).
[CrossRef]

N. Chi, J. Zhang, P. V. Holm-Nielsen, C. Peucheret, P. Jeppesen, “Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation,” IEEE Photon. Technol. Lett., 15, 760-762 (2003).
[CrossRef]

M. Zitelli, “Optical phase and intensity modulation using dark pulses,” IEEE Photon. Technol. Lett. 16, 1972-1974 (2004).
[CrossRef]

Other (2)

M. Zitelli, “Optical phase and intensity modulation with improved transmitters,” U.S. patent application 10/732,404, Dec. 11, 2003.

“Optolink Software user documentation” (TelCon, 2004), <a href="http://www.tel-con.com/">http://www.tel-con.com/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Example of dark pulse PhIM optical power (a), with NRZ (b) or pulsed (c) optical phase.

Fig. 2.
Fig. 2.

Dark pulse PhIM transmitter scheme. LD is the laser diode.

Fig. 3.
Fig. 3.

Bright pulse PhIM transmitter scheme. An output signal is shown by way of example.

Fig. 4.
Fig. 4.

(a) transmitted spectra for the 3 cases described in the text. (b) received amplitude (left) and phase (right) eyes for dark pulse PhIM. (c) received amplitude (left) and phase (right) eyes for bright pulse PhIM.

Fig. 5.
Fig. 5.

(a) Q factor vs. OSNR in the 3 cases described in the text. (b) eye closure penalty vs. cumulated dispersion. (c) eye closure penalty vs. DGD. d): eye closure penalty vs. channel spacing in WDM transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A ( t ) = NRZ A ( t ) d A ( t T B ) b ϕ ( t ) = NRZ A ( t ) NRZ ϕ ( t ) V 1 ( t ) = V A ( t ) + V ϕ ( t ) d ϕ ( t ) = b ϕ ( t ) d ϕ ( t T B ) V 2 ( t ) = V A ( t ) + V ϕ ( t ) . V A ( t ) = d A ( t ) V π V ϕ ( t ) = d ϕ ( t ) V π V π 2
A out ( t ) = A in ( t ) { 1 2 exp [ i π V 1 ( t ) V π ] + 1 2 ER lin 1 ER lin + 1 exp [ i π V 2 ( t ) V π ] } .

Metrics