Abstract

We evaluate the trefoil channels present between the holes of microstructured fibers as a potential dense array of small waveguides. In channels with an inner radius of 330nm, calculations indicate possible propagation with a mode waist of ~350nm at λ=670nm, near to the diffraction limit. Actual measurements have been performed on a 1-meter fiber section, with injection by a microlensed fiber and mapping of output by near-field scanning optical microscopy. They show that light can be output in individual channels or in several of them, depending on the injection. The observed waist is ~500nm, possibly due to experimental widening. Estimated propagation losses are <20dB/m. Since each channel occupies only 2µm2, this structure opens a way to dense parallel optical processing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Knight, J. Broeng, T. Birks, and P. Russell, "Photonic band guidance in optical fibers," Science 282, 1476- 1478 (1998).
    [CrossRef] [PubMed]
  2. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  3. J. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  4. A.M. Zheltikov, "The physical limit for the waveguide enhancement on nonlinear optical processes," Optics & Spectroscopy 95, 410-415 (2003).
    [CrossRef]
  5. M.A. Foster, K.D. Moll, and A.L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880</a>
    [CrossRef] [PubMed]
  6. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  7. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025</a>
    [CrossRef] [PubMed]
  8. Y.K. Lizé, E.C. Mägi, V.G. Ta'eed, J.A. Bolger, P. Steinvurzel, and B.J. Eggleton " Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209</a>
    [CrossRef] [PubMed]
  9. M.A. Foster and A.L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137</a>
    [CrossRef] [PubMed]
  10. J. Meier, G.I. Stegeman, Y. Silverberg, R. Morandotti, and J.S. Aitchison, "Nonlinear optical beam interactions in waveguide arrays," Phys. Rev. Lett. 93, 093903 1-4 (2004).
    [CrossRef]
  11. A.W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Am. 62, 1267-1270 (1972).
    [CrossRef]
  12. M. Hu, C. Wang, Y. Li, Z. Wang, L. Chai, and A.M. Zheltikov, "Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber," Opt. Express 12, 6129-6134 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129</a>
    [CrossRef] [PubMed]
  13. M.A. van Eijkelenborg, "Imaging with microstructured polymer fibre" Opt. Express 12,342-346 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-342">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-342
    [CrossRef] [PubMed]
  14. J.M. Moison, A. Apetrei, J. Levenson, G. Mélin, S. Lempereur, A. Fleureau, E. Bourov, and L. Gasca, "Evaluation of a highly nonlinear microstructured optical fiber by near-field scanning optical microscopy and simulations: nonlinear coefficient and coupling losses" Appl. Phys. B 80, 73-76 (2005).
    [CrossRef]
  15. J.M. Moison and A.C. Boccara are preparing a manuscript to be called "Semi-quantitative approach to NSOM resolution and sensitivity for the analysis of near-infrared waveguide devices".
  16. R. Morandotti, H.S. Eisenberg, Y. Silberberg, M. Sorel, and J.S. Aitchison, "Self-focusing and defocusing in waveguide arrays," Phys. Rev. Lett. 86, 3296-3299 (2001).
    [CrossRef] [PubMed]
  17. D.N. Christodoulides and R.I. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides," Opt. Lett. 13, 794-796 (1988).
    [CrossRef] [PubMed]
  18. E.J. Bochove, P.K. Cheo, and G.G. King, "Self-organization in a multicore fiber laser array" Opt. Lett. 28, 1200-1202 (2003).
    [CrossRef] [PubMed]
  19. K.K. Lee, D.R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L.C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model" Appl. Phys. Lett. 77, 1617-1619 (2000).
    [CrossRef]

Appl. Phys. B

J.M. Moison, A. Apetrei, J. Levenson, G. Mélin, S. Lempereur, A. Fleureau, E. Bourov, and L. Gasca, "Evaluation of a highly nonlinear microstructured optical fiber by near-field scanning optical microscopy and simulations: nonlinear coefficient and coupling losses" Appl. Phys. B 80, 73-76 (2005).
[CrossRef]

Appl. Phys. Lett.

K.K. Lee, D.R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L.C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model" Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

J. Opt. Soc. Am.

Nature

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

M.A. van Eijkelenborg, "Imaging with microstructured polymer fibre" Opt. Express 12,342-346 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-342">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-342
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025</a>
[CrossRef] [PubMed]

M.A. Foster, K.D. Moll, and A.L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880</a>
[CrossRef] [PubMed]

M.A. Foster and A.L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3137</a>
[CrossRef] [PubMed]

Y.K. Lizé, E.C. Mägi, V.G. Ta'eed, J.A. Bolger, P. Steinvurzel, and B.J. Eggleton " Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3209</a>
[CrossRef] [PubMed]

M. Hu, C. Wang, Y. Li, Z. Wang, L. Chai, and A.M. Zheltikov, "Multiplex frequency conversion of unamplified 30-fs Ti:sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber," Opt. Express 12, 6129-6134 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129</a>
[CrossRef] [PubMed]

Opt. Lett.

Optics & Spectroscopy

A.M. Zheltikov, "The physical limit for the waveguide enhancement on nonlinear optical processes," Optics & Spectroscopy 95, 410-415 (2003).
[CrossRef]

Phys. Rev. Lett.

J. Meier, G.I. Stegeman, Y. Silverberg, R. Morandotti, and J.S. Aitchison, "Nonlinear optical beam interactions in waveguide arrays," Phys. Rev. Lett. 93, 093903 1-4 (2004).
[CrossRef]

R. Morandotti, H.S. Eisenberg, Y. Silberberg, M. Sorel, and J.S. Aitchison, "Self-focusing and defocusing in waveguide arrays," Phys. Rev. Lett. 86, 3296-3299 (2001).
[CrossRef] [PubMed]

Science

J. Knight, J. Broeng, T. Birks, and P. Russell, "Photonic band guidance in optical fibers," Science 282, 1476- 1478 (1998).
[CrossRef] [PubMed]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

J.M. Moison and A.C. Boccara are preparing a manuscript to be called "Semi-quantitative approach to NSOM resolution and sensitivity for the analysis of near-infrared waveguide devices".

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

sketch of a section of a MOF, detail of a region inside the holey cladding.

Fig. 2.
Fig. 2.

scanning electron microscopy image of a section of the microstructured optical fiber.

Fig. 3.
Fig. 3.

9×9µm field maps corresponding to propagation in channels at 670nm obtained by the finite element method. Holes are indicated by black lines. Map (a) (neff=1.368588) is obtained with a synthetic symmetrical structure. Maps (b) (neff=1. 363749) and (c) (neff=1.373892) are obtained with the actual fiber structure.

Fig. 4.
Fig. 4.

NSOM images around a single channel.

Fig. 5.
Fig. 5.

NSOM images of the end section of the MOF illuminated at 0.67µm. Image height is 9.2µm. Images are combinations of topographic maps and optical intensity maps. The contrast of each image is normalized to maximum and minimum intensities, so that only relative information is displayed; peak intensity in (a) is about 20 times that in (b).

Metrics