Abstract

We demonstrate Raman oscillation at a wavelength of 1158 nm using a new vibrational mode in a phosphosilicate-glass system when pumped at a 1060-nm wavelength. The lower energy P-O vibration located at 640 cm-1 associated with pure phosphate glass system is comparatively weaker and is shifted to higher energy at 800 cm-1 in the phosphosilicate binary glass. Despite the relative weakness of this vibrational mode, we obtained an efficient Raman fiber laser with the use of fiber Bragg gratings used to select laser oscillation using this mode. The measured slope efficiency with respect to the launched pump power was 60.4% and a maximum laser power of 1.8 W was produced.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Z. Xiong, N. Moore, Z.G. Li, G.C. Lim, D.M. Liu, D.X. Huang, “ Experimental optimization of high power Raman fiber lasers at 1495 nm using phosphosilicate fibres,” Opt. Commun. 239, 137-145 (2004).
    [CrossRef]
  2. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical Modeling and Optimization of Cascaded CW Raman Fiber Lasers,” IEEE, J. Quantum Electron. 36, 1117-1121 (2000).
    [CrossRef]
  3. S. Huang, Y. Feng, A. Shrakawa and K. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42, 1439–1441 (2003).
    [CrossRef]
  4. M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorous-doped fibres for Raman lasers,” Advances in Fiber Optics, E. M. Dianov, Ed., Proc. SPIE 4083, 12-22 (2000).
  5. N. Shibata, M. Horigudhi, and T. Edahiro, “Raman spectrum of binary high-silica glasses and fibres containing GeO2, P2O5 and B2O3,” J. Non-Crystalline. Solids. 45, 115-126 (1981).
    [CrossRef]
  6. E. M. Dianov and A. M. Prokhorov, “Medium-Power CW Raman Fiber Laser,” IEEE J. Sel. Topics Quantum Electron. 6, 1022-1028 (2000).
    [CrossRef]
  7. K. Suzuki, K. Noguchi, and N. Uesugi, “Selective Stimulated Raman-Scattering in Highly P2O5-Doped Silica Single-Mode Fibres,” Opt. Lett. 11, 656-658 (1986).
    [CrossRef] [PubMed]
  8. A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 µm spectral region pumped at 1.15 µm," Electron. Lett. 36, 1015-1016, 2000.
    [CrossRef]
  9. S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm," Appl. Phys. B 76, 793-795, 2003.
    [CrossRef]
  10. F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34-36 (1978).
    [CrossRef]

Advances in Fiber Optics (1)

M. M. Bubnov, E. M. Dianov, O. N. Egorova, S. L. Semjonov, A. N. Guryanov, V. F. Khopin, E. M. DeLiso, “Fabrication and investigation of single-mode highly phosphorous-doped fibres for Raman lasers,” Advances in Fiber Optics, E. M. Dianov, Ed., Proc. SPIE 4083, 12-22 (2000).

Appl. Phys. B (1)

S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 µm," Appl. Phys. B 76, 793-795, 2003.
[CrossRef]

Appl. Phys. Lett. (1)

F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34-36 (1978).
[CrossRef]

Electron. Lett. (1)

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 µm spectral region pumped at 1.15 µm," Electron. Lett. 36, 1015-1016, 2000.
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

E. M. Dianov and A. M. Prokhorov, “Medium-Power CW Raman Fiber Laser,” IEEE J. Sel. Topics Quantum Electron. 6, 1022-1028 (2000).
[CrossRef]

IEEE, J. Quantum Electron. (1)

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical Modeling and Optimization of Cascaded CW Raman Fiber Lasers,” IEEE, J. Quantum Electron. 36, 1117-1121 (2000).
[CrossRef]

J. Non-Crystalline. Solids. (1)

N. Shibata, M. Horigudhi, and T. Edahiro, “Raman spectrum of binary high-silica glasses and fibres containing GeO2, P2O5 and B2O3,” J. Non-Crystalline. Solids. 45, 115-126 (1981).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shrakawa and K. Ueda, “Generation of 10.5 W, 1178nm Laser Based on Phosphosilicate Raman Fiber Laser,” Jpn. J. Appl. Phys. 42, 1439–1441 (2003).
[CrossRef]

Opt. Commun. (1)

Z. Xiong, N. Moore, Z.G. Li, G.C. Lim, D.M. Liu, D.X. Huang, “ Experimental optimization of high power Raman fiber lasers at 1495 nm using phosphosilicate fibres,” Opt. Commun. 239, 137-145 (2004).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Measured spontaneous Raman spectrum of the phosphosilicate preform.

Fig. 2.
Fig. 2.

Schematic diagram of the RFL system. M: dielectric mirror; DCFL: double-clad fiber laser; HR: high reflector; FER: Fresnel end reflector; OSA: optical spectrum analyzer; PM: power meter.

Fig. 3.
Fig. 3.

The output spectrum evolution as a function of the launched pump power in the first setup.

Fig. 4.
Fig. 4.

The output spectrum measured at a launched pump power of 3.92 W in the second setup.

Fig. 5.
Fig. 5.

The spectrum in the third setup at a 3.8 W pump power. The inset displays the 1158 nm only.

Fig. 6.
Fig. 6.

The measured output power versus the launched pump power relevant to the third setup.

Tables (1)

Tables Icon

Table 1. Raman peak position and gain intensity in binary phosphosilicate fibre

Metrics