Abstract

An integrated optical multisensor for organic pollutants has been realised, and characterised for a single analyte. The sensor exploits fluorescence immunoassay in the evanescent field of channel waveguides to enable rapid, simultaneous and high-sensitivity fluorescence detection of up to 32 pollutants in water. The chemical modification used to render the surface specific to analytes allows automatic regeneration for immediate reuse. The system has been demonstrated for the key pollutant estrone and a detection limit below 1 ng/L has been achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.F. Collings, F.Caruso, "Biosensors: recent advances," Rep. Prog. Phys. 60, 1397-1445, (1997).
    [CrossRef]
  2. G.L. Duveneck, A.P.Abel, M.A. Bopp, G.M. Kresbach and M. Ehrat, "Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids," Anal. Chim. Acta 469, 49-61 (2002).
    [CrossRef]
  3. F.S. Ligler, C.R. Taitt, L.C Shriver-Lake, K.E. Sapsford, Y.Shubin, J.P. Golden, "Array biosensor for detection of toxins," Anal. Bioanal. Chem. 377, 469-477 (2003).
    [CrossRef] [PubMed]
  4. C.S. Burke, O. McGaughey, J.M. Sabattie, H. Barry, A.K. McEvoy, C. McDonagh & B.D. MacCraith, "Development of an integrated optic oxygen sensor using a novel generic platform," Analyst 130, 41-45 (2005).
    [CrossRef]
  5. A. Miliou, H. Zhenguang, H.C. Cheng, R.Srivastava & R.V. Ramaswamy, "Fiber-compatible K+-Na+ ion-exchanged channel waveguides - fabrication and characterization," IEEE J. Quantum Electron. 25, 1889-1897 (1989).
    [CrossRef]
  6. R.D. Harris , G.R.Quigley, J.S. Wilkinson, A. Klotz, C. Barzen, A. Brecht, G. Gauglitz, R. A. Abuknesha, "Waveguide immunofluorescence sensor for water pollution analysis," Chemical Microsensors and Applications 3539, 27-35 (1989).
  7. J. Piehler, A.B., K.E. Geckeler, G. Gauglitz, "Surface modification for direct immunoprobes," Biosens. Bioelectron. 11, 579-590 (1996).
    [CrossRef] [PubMed]
  8. J. Tschmelak, M. Kumpf, G. Proll, G. Gauglitz, "Biosensor for seven sulphonamides in drinking, ground and surface water with difficult matrices," Anal. Lett. 37, 1701-1718 (2004).
    [CrossRef]

Anal. Bioanal. Chem.

F.S. Ligler, C.R. Taitt, L.C Shriver-Lake, K.E. Sapsford, Y.Shubin, J.P. Golden, "Array biosensor for detection of toxins," Anal. Bioanal. Chem. 377, 469-477 (2003).
[CrossRef] [PubMed]

Anal. Chim. Acta

G.L. Duveneck, A.P.Abel, M.A. Bopp, G.M. Kresbach and M. Ehrat, "Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids," Anal. Chim. Acta 469, 49-61 (2002).
[CrossRef]

Anal. Lett.

J. Tschmelak, M. Kumpf, G. Proll, G. Gauglitz, "Biosensor for seven sulphonamides in drinking, ground and surface water with difficult matrices," Anal. Lett. 37, 1701-1718 (2004).
[CrossRef]

Analyst

C.S. Burke, O. McGaughey, J.M. Sabattie, H. Barry, A.K. McEvoy, C. McDonagh & B.D. MacCraith, "Development of an integrated optic oxygen sensor using a novel generic platform," Analyst 130, 41-45 (2005).
[CrossRef]

Biosens. Bioelectron.

J. Piehler, A.B., K.E. Geckeler, G. Gauglitz, "Surface modification for direct immunoprobes," Biosens. Bioelectron. 11, 579-590 (1996).
[CrossRef] [PubMed]

Chemical Microsensors and Applications

R.D. Harris , G.R.Quigley, J.S. Wilkinson, A. Klotz, C. Barzen, A. Brecht, G. Gauglitz, R. A. Abuknesha, "Waveguide immunofluorescence sensor for water pollution analysis," Chemical Microsensors and Applications 3539, 27-35 (1989).

IEEE J. Quantum Electron.

A. Miliou, H. Zhenguang, H.C. Cheng, R.Srivastava & R.V. Ramaswamy, "Fiber-compatible K+-Na+ ion-exchanged channel waveguides - fabrication and characterization," IEEE J. Quantum Electron. 25, 1889-1897 (1989).
[CrossRef]

Rep. Prog. Phys.

A.F. Collings, F.Caruso, "Biosensors: recent advances," Rep. Prog. Phys. 60, 1397-1445, (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of multisensor chip

Fig. 2.
Fig. 2.

Photograph of a sensor chip

Fig. 3.
Fig. 3.

Experimental apparatus

Fig. 4.
Fig. 4.

Sensor test cycle for zero estrone in water (blank) using 6ng/mL anti-estrone

Fig. 5.
Fig. 5.

Averaged calibration curve for estrone, using 3ng/mL anti-estrone

Fig. 6.
Fig. 6.

Fluorescent signal magnitude along the chip for co- and contra-directional fluid flow (wrt light propagation).

Metrics