Abstract

We investigate the interaction of visible supercontinuum light with fiber Bragg gratings that are UV-written in a birefringent air-silica microstructure fiber. Spectral enhancements near the grating resonance are observed, and their variations are studied by adjusting the power level and polarization of input pulses. With weak input pulses (<0.5nJ), individual Raman solitons are observed in the spectrum, and the grating generates a picosecond dispersive wave centered near its bandgap when a Raman soliton has both spatial and spectral overlap with the grating resonance. Using the nonlinear Schrödinger equation (NLSE) with a simplified model of the grating dispersion, our numerical modeling reproduces the salient features of this enhancement, and shows the important role played by grating dispersion outside the bandgap.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25 �??27 (2000)
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
    [CrossRef] [PubMed]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001)
    [CrossRef]
  4. A. Bassi, J. Swartling, C. D�??Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, �??Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,�?? Opt. Lett. 29, 2405-2407 (2004)
    [CrossRef] [PubMed]
  5. K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, �??Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,�?? Phys. Rev. Lett. 93, 037401 (2004)
    [CrossRef] [PubMed]
  6. H. Kano and H. Hamaguchi, �??Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,�?? Opt. Lett. 23, 2360-2362 (2003)
    [CrossRef]
  7. K. Mori, H. Takara, and S. Kawanishi, �??Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,�?? J. Opt. Soc. Am. B 18, 1780-1792 (2001)
    [CrossRef]
  8. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002)
    [CrossRef]
  9. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, �??Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,�?? J. Opt. Soc. Am. B 19, 2165-2170 (2002)
    [CrossRef]
  10. B. R. Washburn, S. E. Ralph, and R. S. Windeler, �??Ultrashort pulse propagation in air-silica microstructure fiber,�?? Opt. Express 10, 575-580 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>
    [PubMed]
  11. Z. Zhu and T. G. Brown, "Effect of frequency chirping on supercontinuum generation in photonic crystal fibers," Opt. Express 12, 689-694 (2004), ,<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-689">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-689</a>
    [CrossRef] [PubMed]
  12. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880</a>
    [CrossRef] [PubMed]
  13. S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express 12, 4731-4741 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4731</a>
    [CrossRef] [PubMed]
  14. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
    [CrossRef]
  15. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in microstructure fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002)
    [CrossRef]
  16. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>
    [PubMed]
  17. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, �??All-fiber, octave-spanning supercontinuum,�?? Opt. Lett. 28, 643-645 (2003)
    [CrossRef] [PubMed]
  18. V. L. Kalashnikov, P. Dombi, T. Fuji, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, R. S. Windeler, A. Apolonski, �??Maximization of supercontinua in photonic crystal fibers by using double pulses and polarization effects,�?? Appl. Phys. B 77, 319-324 (2003)
    [CrossRef]
  19. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>
    [CrossRef] [PubMed]
  20. J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, �??Supercontinuum generation in ultraviolet-irradiated fibers,�?? Opt. Lett. 29, 2363-2365 (2004)
    [CrossRef] [PubMed]
  21. N. Bloembergen and A. J. Sievers, �??Nonlinear optical properties of periodic laminar structures,�?? Appl. Phys. Lett. 17, 483-485 (1970)
    [CrossRef]
  22. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. G. Brown, �??Supercontinuum generation in a fiber grating�??, Appl. Phys. Lett. 85, 4600-4602 (2004)
    [CrossRef]
  23. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., �??Grating resonances in air-silica microstructured optical fibers,�?? Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  24. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, �??Cladding-mode-resonances in air-silica microstructure optical fibers�??, J. Lightwave Technol. 18, 1084 -1100 (2000)
    [CrossRef]
  25. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibers,�?? Electron. Lett. 37, 1510-1512 (2001)
    [CrossRef]
  26. I. G. Cormack, D. T. Reid, W. J. Wadsworth, and P. St. J. Russell, �??Observation of soliton self-frequency shift in photonic crystal fibre,�?? Electron. Lett. 38, 167-169 (2002)
    [CrossRef]
  27. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli and F. Ouellette, �??Dispersion compensation using a fibre grating in transmission�??, Electron. Lett. 32, 1610-1612 (1996)
    [CrossRef]
  28. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, San Diego, USA, 2001)
  29. N. M. Litchinitser, B. J. Eggleton and D. B. Patterson, �??Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,�?? J. Lightwave Technol. 15, 1303-1313 (1997)
    [CrossRef]
  30. Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers,�?? Opt. Express 10, 853-864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a>
    [PubMed]
  31. Z. Zhu and T. G. Brown, �??Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,�?? J. Opt. Soc. Am. B 21, 249-257 (2004)
    [CrossRef]
  32. J. P. Gordon, �??Dispersive perturbations of solitons of the nonlinear Schrödinger equation,�?? J. Opt. Soc. Am. B 9, 91-97 (1992)
    [CrossRef]

Appl. Phys. B (1)

V. L. Kalashnikov, P. Dombi, T. Fuji, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, R. S. Windeler, A. Apolonski, �??Maximization of supercontinua in photonic crystal fibers by using double pulses and polarization effects,�?? Appl. Phys. B 77, 319-324 (2003)
[CrossRef]

Appl. Phys. Lett. (1)

N. Bloembergen and A. J. Sievers, �??Nonlinear optical properties of periodic laminar structures,�?? Appl. Phys. Lett. 17, 483-485 (1970)
[CrossRef]

Apply. Phys. Lett. (1)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. G. Brown, �??Supercontinuum generation in a fiber grating�??, Appl. Phys. Lett. 85, 4600-4602 (2004)
[CrossRef]

Electron. Lett. (3)

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibers,�?? Electron. Lett. 37, 1510-1512 (2001)
[CrossRef]

I. G. Cormack, D. T. Reid, W. J. Wadsworth, and P. St. J. Russell, �??Observation of soliton self-frequency shift in photonic crystal fibre,�?? Electron. Lett. 38, 167-169 (2002)
[CrossRef]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli and F. Ouellette, �??Dispersion compensation using a fibre grating in transmission�??, Electron. Lett. 32, 1610-1612 (1996)
[CrossRef]

J. Lightwave Technol. (2)

N. M. Litchinitser, B. J. Eggleton and D. B. Patterson, �??Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,�?? J. Lightwave Technol. 15, 1303-1313 (1997)
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, �??Cladding-mode-resonances in air-silica microstructure optical fibers�??, J. Lightwave Technol. 18, 1084 -1100 (2000)
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Lett. (1)

A. Bassi, J. Swartling, C. D�??Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, �??Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,�?? Opt. Lett. 29, 2405-2407 (2004)
[CrossRef] [PubMed]

Opt. Express (7)

B. R. Washburn, S. E. Ralph, and R. S. Windeler, �??Ultrashort pulse propagation in air-silica microstructure fiber,�?? Opt. Express 10, 575-580 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>
[PubMed]

Z. Zhu and T. G. Brown, "Effect of frequency chirping on supercontinuum generation in photonic crystal fibers," Opt. Express 12, 689-694 (2004), ,<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-689">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-689</a>
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2880</a>
[CrossRef] [PubMed]

S. Xu, D. H. Reitze, and R. S. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express 12, 4731-4741 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4731</a>
[CrossRef] [PubMed]

V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>
[PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>
[CrossRef] [PubMed]

Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers,�?? Opt. Express 10, 853-864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a>
[PubMed]

Opt. Lett. (8)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., �??Grating resonances in air-silica microstructured optical fibers,�?? Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

J. W. Nicholson, P. S. Westbrook, K. S. Feder, and A. D. Yablon, �??Supercontinuum generation in ultraviolet-irradiated fibers,�?? Opt. Lett. 29, 2363-2365 (2004)
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, �??All-fiber, octave-spanning supercontinuum,�?? Opt. Lett. 28, 643-645 (2003)
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25 �??27 (2000)
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002)
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001)
[CrossRef]

H. Kano and H. Hamaguchi, �??Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,�?? Opt. Lett. 23, 2360-2362 (2003)
[CrossRef]

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, �??Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,�?? Phys. Rev. Lett. 93, 037401 (2004)
[CrossRef] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000)
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, San Diego, USA, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup for grating interaction with supercontinuum, where fiber Bragg gratings are UV-inscribed into the Ge-doped core of a microstructure fiber. ISO: Isolator, MO: Microscope Objective, MSF: Microstructure Fiber, SMF: Single-Mode Fiber, OSA: Optical Spectrum Analyzer. Direct coupling means either butt-coupling or fusion splicing.

Fig. 2.
Fig. 2.

Microstructure fiber for supercontinuum generation and grating writing. (a) Overview of the fiber end surface; (b) Detail view of fiber core. The Ge-doped, photosensitive area is indicated using broken white lines.

Fig. 3.
Fig. 3.

(a) Measured transmission of a grating along two principal axes (X: slow, Y: fast), and (b) Dispersion and birefringence (inset) of the microstructure fiber as computed from the full-vector, finite difference simulation [30].

Fig. 4.
Fig. 4.

Grating response at high pulse energy. (a) Overall SC spectrum for fiber with or without grating inscribed, showing little difference except around the bandgap. Inset: A typical zoom-in view, with sharp peaks accompanied by spectral dips. (b) The spectral peaks could show up alone without visible dip features depending on pulse energy and input alignment.

Fig. 5.
Fig. 5.

SC spectra at lower pulse energy, with insets showing grating response around the 950nm grating bandgap. (a) Minimal grating interaction when the bandgap is around a soliton peak in the final spectrum. (b) Grating peak appears against low power background when the bandgap sits between two soliton peaks.

Fig. 6.
Fig. 6.

Measured transmission spectra, showing dispersive waves arise as the Raman soliton of longest wavelength is tuned through the grating bandgap at 950nm. Vertical offsets added for clarity.

Fig. 7.
Fig. 7.

Illustration of 3 different scenarios as the soliton propagates through the grating. RS: Raman soliton, DW: dispersive wave. (a) The soliton is at shorter wavelength side of the grating bandgap at the grating section, no dispersive wave is generated; (b) The soliton spectrum overlaps with the grating bandgap at the grating section, dispersive wave is generated and then spectrally separated from the soliton; (c) The soliton is at longer wavelength side of the grating bandgap at the grating section, no dispersive wave is generated.

Fig. 8.
Fig. 8.

Study of transition from linear back-reflection to nonlinear grating enhancement. (a) Experimental setup, where SC is generated in PCF and then coupled into the grating, with coupling controlled by the variable air gap. PCF: Crystal Fibre NL-2.0-760. MSF: OFS Labs microstructure fiber. (b) Changes in transmission spectrum as coupling efficiency increases. The resolution of OSA is set to be 0.1nm.

Fig. 9.
Fig. 9.

Simulation of grating in SC propagation. (a) Calculated dispersion profile in the grating section for two principal axes. X: Slow, Y: Fast. (b) Simulation of a 3cm grating inside a 6cm fiber using polarization-coupled NLSE. Input pulse energy is 1.5nJ, and polarization is 45° between X and Y. Grating coupling coefficient κ=0.6/mm.

Fig. 10.
Fig. 10.

Simulation of grating interaction with femtosecond pulses under a simple NLSE model. Peak power is 0.5kW for the input pulse, and propagation length is 3cm. (a) Initial and final temporal pulse envelope, note the picosecond tail produced by the grating. (b) Initial and final pulse spectrum. The sharp peak in the final spectrum corresponds to the picosecond tail.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D total ( λ ) = 2 π c λ 2 d 2 β total d ω 2 , β total ( λ ) = β fiber ( λ ) + Δ β grating ( λ )
Δ β grating ( λ ) = { δ 2 κ 2 δ δ > κ 0 κ < δ < κ δ 2 κ 2 δ δ < κ

Metrics