Abstract

We introduce the use of hollow micron-sized spheres with a finite-thickness glass shell as individual micromirrors operating by total internal reflection (TIR) when illuminated off-axis. We also demonstrated that this kind of spheres can be optically trapped and manipulated in two dimensions using a Gaussian beam in a conventional optical tweezers setup, which allows the precise positioning of the micromirrors at specific locations within a sample cell. This mirrors constitutes a new micro-tool in the context of the so called lab-on-a-chip

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970)
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986)
    [CrossRef] [PubMed]
  3. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, �??Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,�?? Opt. Lett. 22, 52-54 (1997)
    [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-traped microscopic particles,�?? Nature 394, 348-350 (1998)
    [CrossRef]
  5. M. P. MacDonald, L. Paterson, K. Volke-Sepúlveda, J. Arlt, W. Sibbett, and K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101-1103 (2002)
    [CrossRef] [PubMed]
  6. M. W. Berns, �??Laser Scissors and tweezers,�?? Sci. Am. 278, 62-67 (1998)
    [CrossRef] [PubMed]
  7. K. O. Greulich, Micromanipulation by Light in Biology and Medicine, Birkhäuser Verlag, Germany, 1999
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, �??The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,�?? Biophys. J. 81, 767-784 (2001)
    [CrossRef] [PubMed]
  9. M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003)
    [CrossRef] [PubMed]
  10. K. Ladavac, K. Kasza, and D. G. Grier, �??Sorting by periodic potential energy landscapes: Optical fractionation,�?? Phys. Rev. E 70: Art. No. 010901 (2004)
    [CrossRef]
  11. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, �??Optically driven micromachine elements,�?? Appl. Phys. Lett. 78, 547-549 (2001)
    [CrossRef]
  12. P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001)
    [CrossRef]
  13. 1-chip DLP�?� projection system (Texas Instruments Incorporated, 2005) <a href="http://www.dlp.com/dlp_technology/dlp_technology_overview.asp#1">http://www.dlp.com/dlp_technology/dlp_technology_overview.asp#1</a>
  14. S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Barlett, �??Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,�?? Appl. Phys. Lett. 83, 767-769 (2003)
    [CrossRef]
  15. Z. Moktadir, C. Gollasch, E. Koukharenko, M. Kraft, G. V. Prakash, J. J. Baumberg, M. Trupke, S. Eriksson, and E. A. Hinds, �??Fabrication of micro-mirrors with pyramidal shape using anisotropic etching of silicon,�?? (Citebase, 2004) <a href="http://arxiv.org/abs/physics/0409021">http://arxiv.org/abs/physics/0409021</a>
  16. A. Ashkin and J. M. Dziedzic, �??Stability of optical levitation by radiation pressure,�?? Appl. Phys. Lett. 24, 586-588 (1974)
    [CrossRef]
  17. K. T. Gahagan and G. A Swartzlander, Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827 (1996)
    [CrossRef] [PubMed]
  18. M. P. MacDonald, L. Paterson, W. Sibbett, and K. Dholakia, �??Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,�?? Opt. Lett. 26, 863-865 (2001)
    [CrossRef]
  19. V. Garces-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, �??Orbital angular momentum transfer to an optically trapped low-index particle,�?? Phys. Rev A 66: Art. No. 063402 (2002)
    [CrossRef]
  20. P. J. Rodrigo, V. R. Daria , and J. Gluckstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,�?? Optics Express 12, 1417-1425 (2004)
    [CrossRef] [PubMed]
  21. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, �??Enhanced Backscattering of Light from a Random Grating," Ann. Phys. 203, 255-307 (1990)
    [CrossRef]
  22. A. Mendoza-Suárez and E. R. Méndez, �??Light scattering by a reentrant fractal surface,�?? Appl. Opt. 36, 3521-3531 (1997)
    [CrossRef] [PubMed]
  23. K. Volke-Sepúlveda, S. Chávez-Cerda, V. Garces-Chávez and K. Dholakia, �??3-D Optical forces and transfer of orbital angular momentum from multi-ringed light beams to spherical microparticles�??, J. Opt. Soc. Am. B 21, 1749-1757 (2004)
    [CrossRef]
  24. S. Sato, Y. Harada, and Y. Waseda, �??Optical trapping of microscopic metal particles,�?? Opt. Lett. 19, 1807-1809 (1994)
    [CrossRef] [PubMed]
  25. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical torque controlled by elliptical polarization,�?? Opt. Lett. 23, 1-3 (1998)
    [CrossRef]
  26. B. L. Lu, Y. Q. Li, H. Ni, and Y. Z. Wang, �??Laser-induced hybrid trap for micro-bubbles,�?? Appl. Phys. B 71, 801-805 (2000)
    [CrossRef]

Ann. Phys. (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, �??Enhanced Backscattering of Light from a Random Grating," Ann. Phys. 203, 255-307 (1990)
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

B. L. Lu, Y. Q. Li, H. Ni, and Y. Z. Wang, �??Laser-induced hybrid trap for micro-bubbles,�?? Appl. Phys. B 71, 801-805 (2000)
[CrossRef]

Appl. Phys. Lett. (4)

S. Coyle, G. V. Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Barlett, �??Spherical micromirrors from templated self-assembly: Polarization rotation on the micron scale,�?? Appl. Phys. Lett. 83, 767-769 (2003)
[CrossRef]

A. Ashkin and J. M. Dziedzic, �??Stability of optical levitation by radiation pressure,�?? Appl. Phys. Lett. 24, 586-588 (1974)
[CrossRef]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, �??Optically driven micromachine elements,�?? Appl. Phys. Lett. 78, 547-549 (2001)
[CrossRef]

P. Galajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001)
[CrossRef]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, �??The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,�?? Biophys. J. 81, 767-784 (2001)
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003)
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-traped microscopic particles,�?? Nature 394, 348-350 (1998)
[CrossRef]

Opt. Lett. (6)

Optics Express (1)

P. J. Rodrigo, V. R. Daria , and J. Gluckstad, �??Real-time interactive optical micromanipulation of a mixture of high- and low-index particles,�?? Optics Express 12, 1417-1425 (2004)
[CrossRef] [PubMed]

Phys. Rev A (1)

V. Garces-Chavez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, �??Orbital angular momentum transfer to an optically trapped low-index particle,�?? Phys. Rev A 66: Art. No. 063402 (2002)
[CrossRef]

Phys. Rev. E (1)

K. Ladavac, K. Kasza, and D. G. Grier, �??Sorting by periodic potential energy landscapes: Optical fractionation,�?? Phys. Rev. E 70: Art. No. 010901 (2004)
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970)
[CrossRef]

Sci. Am. (1)

M. W. Berns, �??Laser Scissors and tweezers,�?? Sci. Am. 278, 62-67 (1998)
[CrossRef] [PubMed]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepúlveda, J. Arlt, W. Sibbett, and K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101-1103 (2002)
[CrossRef] [PubMed]

Other (3)

K. O. Greulich, Micromanipulation by Light in Biology and Medicine, Birkhäuser Verlag, Germany, 1999

1-chip DLP�?� projection system (Texas Instruments Incorporated, 2005) <a href="http://www.dlp.com/dlp_technology/dlp_technology_overview.asp#1">http://www.dlp.com/dlp_technology/dlp_technology_overview.asp#1</a>

Z. Moktadir, C. Gollasch, E. Koukharenko, M. Kraft, G. V. Prakash, J. J. Baumberg, M. Trupke, S. Eriksson, and E. A. Hinds, �??Fabrication of micro-mirrors with pyramidal shape using anisotropic etching of silicon,�?? (Citebase, 2004) <a href="http://arxiv.org/abs/physics/0409021">http://arxiv.org/abs/physics/0409021</a>

Supplementary Material (3)

» Media 1: MPG (1490 KB)     
» Media 2: MPG (1672 KB)     
» Media 3: MPG (2476 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometrical parameters involved in the description of a hollow sphere illuminated by a single light ray.

Fig. 2.
Fig. 2.

Results for the numerical simulation of the light streak generated by reflection on the glass-air interface of a hollow glass sphere in water. (a)-(d) Square modulus of the electric field as a function of the incidence position of the light beam for a fixed shell thickness of t=3 µm and external radius of R 2=10 µm. (e)-(h) Square modulus of the electric field as a function of the shell thickness for a fixed incidence position, defined by θ=45° and external radius of R 2=10 µm.

Fig. 3.
Fig. 3.

(1.45MB) Consecutive frames showing the 2D optical trapping of a hollow sphere. (a) Light beam moving towards the hollow sphere. (b)-(d) The sphere is 2D trapped and displaced from its original position.

Fig. 4.
Fig. 4.

(1.63MB) Generation of a reflected light streak by a hollow sphere illuminated off-axis. (a) Light beam moving towards the hollow sphere. (b) Generation of the light streak effect. (c)-(d) The reflected beam is directed against a neighbor particle, which is pushed due to the radiation pressure along a distance of several tens of microns.

Fig.5.
Fig.5.

(2.41MB) Sequence of frames showing two consecutive reflections obtained with a pair of hollow spheres close to each other and the movement of a neighbor particle due to the radiation pressure exerted by the second reflection.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin ( α 0 ) min = n 3 R 1 n 1 R 2 .
U inc ( x , 0 ) = sin⁡ c ( 2 a x λ ) ,
U l ( r ) = U inc ( r ) + 1 4 π S 1 { U 1 ( R ) ( n ̂ 1 ( R ) · G l ( r R ) ) G l ( r R ) V 1 ( R ) } d s 1 ,
U II ( r ) = 1 4 π S 1 { U 1 ( R ) ( n ̂ 1 ( R ) · G II ( r R ) ) G II ( r R ) V 1 ( R ) } d s 1
+ 1 4 π S 2 { U 2 ( R ) ( n ̂ 2 ( R ) · G II ( r R ) ) G II ( r R ) V 2 ( R ) } d s 2 ,
U III ( r ) = 1 4 π S 2 { U 2 ( R ) ( n ̂ 2 ( R ) · G III ( r R ) ) G III ( r R ) V 2 ( R ) } d s 2 ,
G m ( r R ) = i π H 0 ( 1 ) ( ε m ( ω ) k o r R ) ,

Metrics