Abstract

We investigate all-optical switching in a multi-quantum-well semiconductor optical amplifier-based nonlinear polarization switch using optical pulses with duration of 200 fs at a central wavelength of 1520 nm. We show full recovery of the switch within 600 fs, in both the gain and absorption regime. We discuss the switching and recovery mechanisms using numerical simulations that are in qualitatively good agreement with our experimental data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen and K. E. Stubkjaer, “All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers,” J. lightwave Technol. 14, 942-954 (1996).
    [CrossRef]
  2. D. Nesset, T. Kelly and D. Marcenac, “All-optical wavelength using SOA nonlinearities,” IEEE Communications Magazine 36, 56-61 (1998).
    [CrossRef]
  3. K. L. Hall, et al., “Nonlinearities in active media,” In Nonlinear Optics In Semiconductors II. Semiconductors and Semimetals, 59, E. Garmire and A. Kost, (Academic Press, San Diego, 1999).
  4. N. S. Patel, K. L. Hall, K. A. Rauschenbach, “40Gbit/sec cascadable all-optical logic with an ultrafast nonlinear interferometer,” Opt. Lett. 21, 1466-14688 (1996).
    [CrossRef] [PubMed]
  5. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958-1959 (1998).
    [CrossRef]
  6. M. F. C. Stephens, M. Asghari, R.V. Penty, and I. H. White, “Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 449-451 (1997).
    [CrossRef]
  7. H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11, 970-972 (1999).
    [CrossRef]
  8. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I.D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523 (1999).
    [CrossRef] [PubMed]
  9. G. Lenz, E. P. Ippen, J. M. Wiesenfeld, M. A. Newkirk, and U. Koren, “Femtosecond dynamics of nonlinear anisotropy in polarization insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 68, 2933 (1996).
    [CrossRef]
  10. S. Nakamura, Y. Ueno, and K. Tajima, “Ultrafast (200-fs switching, 1.5-Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization discriminating symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 10, 1575 (1998).
    [CrossRef]
  11. H. Ju, S. Zhang, H. de Waardt, G.D. Khoe and H.J.S. Dorren, “Ultrafast all-optical switching by pulse-induced birefringence in a multi-quantum-well semiconductor optical amplifier,” in Technical Digest CLEO (San Francisco, 2004), CFJ1.
  12. X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169 (2003).
    [CrossRef]
  13. A.K. Mishra, X. Yang, D. Lenstra, b, G.D. Khoe and H.J.S. Dorren, “Wavelength conversion employing 120 fs optical pulses in an SOA-based nonlinear polarization switch,” IEEE J. Sel. Quantum Electon. (to be published).
  14. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141-147 (2003).
    [CrossRef]

Appl. Phys. Lett. (1)

G. Lenz, E. P. Ippen, J. M. Wiesenfeld, M. A. Newkirk, and U. Koren, “Femtosecond dynamics of nonlinear anisotropy in polarization insensitive semiconductor optical amplifiers,” Appl. Phys. Lett. 68, 2933 (1996).
[CrossRef]

CLEO (San Francisco, 2004) (1)

H. Ju, S. Zhang, H. de Waardt, G.D. Khoe and H.J.S. Dorren, “Ultrafast all-optical switching by pulse-induced birefringence in a multi-quantum-well semiconductor optical amplifier,” in Technical Digest CLEO (San Francisco, 2004), CFJ1.

Electron. Lett. (1)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashyap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

IEEE Communications Magazine (1)

D. Nesset, T. Kelly and D. Marcenac, “All-optical wavelength using SOA nonlinearities,” IEEE Communications Magazine 36, 56-61 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141-147 (2003).
[CrossRef]

IEEE J. Sel. Quantum Electon. (1)

A.K. Mishra, X. Yang, D. Lenstra, b, G.D. Khoe and H.J.S. Dorren, “Wavelength conversion employing 120 fs optical pulses in an SOA-based nonlinear polarization switch,” IEEE J. Sel. Quantum Electon. (to be published).

IEEE Photon. Technol. Lett. (3)

M. F. C. Stephens, M. Asghari, R.V. Penty, and I. H. White, “Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 449-451 (1997).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11, 970-972 (1999).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, “Ultrafast (200-fs switching, 1.5-Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization discriminating symmetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 10, 1575 (1998).
[CrossRef]

J. lightwave Technol. (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen and K. E. Stubkjaer, “All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers,” J. lightwave Technol. 14, 942-954 (1996).
[CrossRef]

Nonlinear Optics In Semiconductors II. S (1)

K. L. Hall, et al., “Nonlinearities in active media,” In Nonlinear Optics In Semiconductors II. Semiconductors and Semimetals, 59, E. Garmire and A. Kost, (Academic Press, San Diego, 1999).

Opt. Commun. (1)

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, “Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier,” Opt. Commun. 223, 169 (2003).
[CrossRef]

Opt. Lett. (1)

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I.D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A schematic of the experimental setup. OPO: Optical parametric oscillator, PBS: Polarizing beam splitter, QP1-2: Quarter-wave plates, M1-2: Mirrors, HP: Half-wave plate, L1-2: Microscope objective lenses, SOA: Semiconductor optical amplifier, PL: Polarizer, PD: Photodetector.

Fig. 2.
Fig. 2.

(a) The SOA gain as a function of an input-pulse energy for input polarization of 45 degrees with respect to the SOA layers. (b) : Measured input pulse spectrum, (c) : Input pulse intensity estimated from (b).

Fig. 3.
Fig. 3.

The normalized probe transmissions through PL at injection currents of 0 mA (a), 200 mA (b) and 180 mA (c) respectively.

Fig. 4.
Fig. 4.

A numerical simulation of probe transmission P(τ). P(τ) is normalized to the input probe power. The bold solid curves are the probe transmissions through the polarizer PL, the thin solid curves represent the contribution due to nonlinear birefringence, the thin dashed curves represent the amplitude change by the gain saturation, and the bold dashed lines are the output pulse intensity of pump light.

Tables (1)

Tables Icon

Table 1. Parameters used in the simulation results

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( τ ) T 2 T 2 { 2 [ P TE ( t , τ ) P TM ( t , τ ) ] 1 2 cos [ Δ ϕ NL ( t , τ ) ] + P TE ( t , τ ) + P TM ( t , τ ) } dt
Δ ϕ NL ( t , τ ) = 1 2 α 0 L [ Γ TE g TE ( z , t , τ ) Γ TM g TM ( z , t , τ ) ] dz .

Metrics