Abstract

The nonlinear optical absorption, scattering and optical limiting properties of CdS nanoparticles dispersed in dimethylformamide (DMF) are investigated. The nanoparticles are synthesized using the standard chemical synthesis method with thioglycerol as the capping agent. The investigations are carried out at 532 nm in the ns regime. Strong two-photon absorption and nonlinear scattering are found to be responsible for good optical limiting characteristics in these nanoparticles.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. W. Tutt, T. F. Boggess, �??A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,�?? Prog. Quant. Electron. 17, 299-338 (1993).
    [CrossRef]
  2. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T.F. Boggess, �??Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,�?? Opt. Eng. 24, 613-623 (1985).
  3. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, R. Kannan, �??Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,�?? Opt. Lett. 23, 1742-1744 (1998).
    [CrossRef]
  4. F. E. Hernandez, S. Yang, E. W. Van Stryland, D. J. Hagan, �??High dynamic-range cascaded-focus optical limiter,�?? Opt. Lett. 25, 1180-1182 (2000).
    [CrossRef]
  5. R. C. Hollins, �??Materials for optical limiters,�?? Current opinion in Solid State and Material Science 4, 189-196 (1999).
    [CrossRef]
  6. D. Ricard, Ph. Roussignol, C. Flytzanis, �??Surface-mediated enhancement of optical phase conjugation metal colloids,�?? Opt. Lett. 10, 511-513(1985).
    [CrossRef] [PubMed]
  7. N. Del Fatti, F. Vallee, �??Ultrafast optical nonlinear properties of metal nanoparticles,�?? Appl. Phys. B 73, 383-390(2001).
    [CrossRef]
  8. T. Vossmeyer, L. Katiskas, M. Glersig. I. G. Popvic. K. Dienser, M. Chemseddine, A. Eychmuller, A., H. Weller. �??CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift.�?? J. Phys. Chem. 98, 7665-7673 (1994).
    [CrossRef]
  9. C. B. Murray, D. J. Norris, M. G. Bawendi, �??Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites,�?? J. Am. Chem. Soc. 115, 8706�??8715(1993).
    [CrossRef]
  10. M. Y. Han, W. Huang, C. H. Chew, L. M. Gan, X.J. Zhang, W. Ji, �??Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion,�?? J. Phys. Chem. B 102, 1884-1887(1998).
    [CrossRef]
  11. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769(1990).
    [CrossRef]
  12. G. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).
  13. V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, �??Nonlinear light scattering in a two-component medium: optical limiting application,�?? Appl. Phys. B 67, 627-632 (1998).
    [CrossRef]
  14. J. He, W. Ji, G. H. Ma, S.H. Tang, H. I. Elim, W. X. Sun, Z. H. Zhang, W.S. Chin, �??Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,�?? J. Appl. Phys. 95, 6381-6386 (2004).
    [CrossRef]
  15. R. E. Schwerzel, K. B. Spahr, J. P. Kurmer, V. E. Wood, J. A. Jenkins, �??Nanocomposite photonic polymers. 1. third-order nonlinear optical properties of capped cadmium sulfide nanocrystals in an ordered polydiacetylene host,�?? J. Phys. Chem. A 102, 5622-5626 (1998).
    [CrossRef]
  16. H. Du, G. Q. Xu, W. S. Chin. L. Huang, W. Ji, �??Synthesis, characterization, and nonlinear optical properties of hybridized CdS- polystyrene Nanocomposite,�?? Chem. Mater. 14, 4473-4479 (2002).
    [CrossRef]

Appl. Phys. B (2)

N. Del Fatti, F. Vallee, �??Ultrafast optical nonlinear properties of metal nanoparticles,�?? Appl. Phys. B 73, 383-390(2001).
[CrossRef]

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, �??Nonlinear light scattering in a two-component medium: optical limiting application,�?? Appl. Phys. B 67, 627-632 (1998).
[CrossRef]

Chem. Mater. (1)

H. Du, G. Q. Xu, W. S. Chin. L. Huang, W. Ji, �??Synthesis, characterization, and nonlinear optical properties of hybridized CdS- polystyrene Nanocomposite,�?? Chem. Mater. 14, 4473-4479 (2002).
[CrossRef]

Curr. opinion in Solid State and Mat. Sc (1)

R. C. Hollins, �??Materials for optical limiters,�?? Current opinion in Solid State and Material Science 4, 189-196 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 760-769(1990).
[CrossRef]

J. Am. Chem. Soc. (1)

C. B. Murray, D. J. Norris, M. G. Bawendi, �??Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites,�?? J. Am. Chem. Soc. 115, 8706�??8715(1993).
[CrossRef]

J. Appl. Phys. (1)

J. He, W. Ji, G. H. Ma, S.H. Tang, H. I. Elim, W. X. Sun, Z. H. Zhang, W.S. Chin, �??Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique,�?? J. Appl. Phys. 95, 6381-6386 (2004).
[CrossRef]

J. Phys. Chem. (1)

T. Vossmeyer, L. Katiskas, M. Glersig. I. G. Popvic. K. Dienser, M. Chemseddine, A. Eychmuller, A., H. Weller. �??CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift.�?? J. Phys. Chem. 98, 7665-7673 (1994).
[CrossRef]

J. Phys. Chem. A (1)

R. E. Schwerzel, K. B. Spahr, J. P. Kurmer, V. E. Wood, J. A. Jenkins, �??Nanocomposite photonic polymers. 1. third-order nonlinear optical properties of capped cadmium sulfide nanocrystals in an ordered polydiacetylene host,�?? J. Phys. Chem. A 102, 5622-5626 (1998).
[CrossRef]

J. Phys. Chem. B (1)

M. Y. Han, W. Huang, C. H. Chew, L. M. Gan, X.J. Zhang, W. Ji, �??Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion,�?? J. Phys. Chem. B 102, 1884-1887(1998).
[CrossRef]

Opt. Eng. (1)

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T.F. Boggess, �??Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,�?? Opt. Eng. 24, 613-623 (1985).

Opt. Lett. (3)

Prog. Quant. Electron. (1)

L. W. Tutt, T. F. Boggess, �??A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,�?? Prog. Quant. Electron. 17, 299-338 (1993).
[CrossRef]

Other (1)

G. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the Z scan set up for recording the nonlinear absorption and scattering. A-aperture, S-sample, F1, F2, F3, F4-Neutral Density Filters, D1, D2, D3-Detectors, BS-Beam splitter, L1, L2, L3, L4-lens.

Fig. 2.
Fig. 2.

UV-Vis absorption of 4.5 nm size of CdS nanoparticles in DMF.

Fig. 3.
Fig. 3.

XRD of 4.5 nm CdS nanoparticles powder on glass plate.

Fig. 4.
Fig. 4.

TEM image of 4.5 nm CdS nanoparticles.

Fig. 5.
Fig. 5.

Open aperture Z-Scan (Detector 2) of 4.5 nm CdS nanoparticles in DMF and its theoretical fits (solid line) at two different intensities and at a concentration of CdS: DMF=1:100

Fig. 6.
Fig. 6.

Scattering of 4.5 nm CdS nanoparticles at three different angles with intensity (Z-position).

Fig. 7.
Fig. 7.

Transmitted light and scattering (Detector1), transmitted light minus scattering (Detector2) of 4.5 nm CdS nanoparticles with respect to input fluence. Dashed line represents linear transmittance of 0.76 at 532 nm and the solid line is the curve obtained by integrating the equation 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d N 0 dt = β I 2 2 ω + N 1 τ 1
dN 1 dt = β I 2 2 ω N 1 τ 1
dI dz = α s I β I 2

Metrics