Abstract

A novel lithium niobate optical modulator of fiber type is proposed. The velocity match and the impedance match can be achieved simultaneously. The modulator is analyzed and designed with the finite element method. The designed modulator operates with a low half-wave voltage of 2.28V, a broad 3dB optical bandwidth of 116.3GHz and a characteristic impedance of 50.67Ω at 1.5µm wavelength.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
    [CrossRef]
  2. K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
    [CrossRef]
  3. G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
    [CrossRef]
  4. K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
    [CrossRef]
  5. H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
    [CrossRef]
  6. D.W. Dolfi and T.R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett. 28, 1197–1198 (1992)
    [CrossRef]
  7. R.C. Alferness, “Waveguide electro-optic modulators,” IEEE Trans. Micro. Theory and Technol. 30, 1121–1137 (1982)
    [CrossRef]
  8. C.M. Kim and R.V. Ramaswamy, “Overlap intergral factors in intergrated optic modulators and switches,” J. Lightwave Technol. 7, 1063–1070 (1989)
    [CrossRef]
  9. J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
    [CrossRef]
  10. K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
    [CrossRef]

1999 (1)

K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
[CrossRef]

1994 (2)

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

1992 (1)

D.W. Dolfi and T.R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett. 28, 1197–1198 (1992)
[CrossRef]

1991 (2)

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

1990 (1)

J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
[CrossRef]

1989 (2)

K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
[CrossRef]

C.M. Kim and R.V. Ramaswamy, “Overlap intergral factors in intergrated optic modulators and switches,” J. Lightwave Technol. 7, 1063–1070 (1989)
[CrossRef]

1982 (1)

R.C. Alferness, “Waveguide electro-optic modulators,” IEEE Trans. Micro. Theory and Technol. 30, 1121–1137 (1982)
[CrossRef]

Alferness, R.C.

R.C. Alferness, “Waveguide electro-optic modulators,” IEEE Trans. Micro. Theory and Technol. 30, 1121–1137 (1982)
[CrossRef]

Bulmer, C.H.

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

Burns, W.K.

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

Choi, S.S.

J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
[CrossRef]

Dolfi, D.W.

D.W. Dolfi and T.R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett. 28, 1197–1198 (1992)
[CrossRef]

Gopalakrishnan, G.K.

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

Greenblatt, A.S.

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

Hagimoto, K.

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

Hiroshi, O.

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Iwaoka, H.

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Jumonji, H.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Kataoka, T.

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

Kawano, K.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Kazuhiko, T.

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Kim, C.M.

C.M. Kim and R.V. Ramaswamy, “Overlap intergral factors in intergrated optic modulators and switches,” J. Lightwave Technol. 7, 1063–1070 (1989)
[CrossRef]

Kim, S.H.

J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
[CrossRef]

Kitoh, T.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Masahiro, N.

K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
[CrossRef]

Masanori, K.

K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
[CrossRef]

McElhanon, R.W.

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

Mitomi, O.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
[CrossRef]

Miyagawa, Y.

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Miyamoto, H.

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Miyamoto, Y.

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
[CrossRef]

Noguchi, K.

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
[CrossRef]

Nozawa, T.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Ramaswamy, R.V.

C.M. Kim and R.V. Ramaswamy, “Overlap intergral factors in intergrated optic modulators and switches,” J. Lightwave Technol. 7, 1063–1070 (1989)
[CrossRef]

Ranganath, T.R.

D.W. Dolfi and T.R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett. 28, 1197–1198 (1992)
[CrossRef]

Suzuki, T.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Yanagibashi, M.

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

Yauhide, T.

K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
[CrossRef]

Yi, J.C.

J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
[CrossRef]

Electron. Lett. (3)

T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 715–716 (1994)
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75GHz broadband Ti: LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–950 (1989)
[CrossRef]

D.W. Dolfi and T.R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron. Lett. 28, 1197–1198 (1992)
[CrossRef]

IEEE Trans. Micro. Theory and Technol. (1)

R.C. Alferness, “Waveguide electro-optic modulators,” IEEE Trans. Micro. Theory and Technol. 30, 1121–1137 (1982)
[CrossRef]

IEEE Trans. Micro. Theory Technol. (2)

K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, M. Yanagibashi, and T. Suzuki, “Spectral domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 Mach-Zehnder optical modulator,” IEEE Trans. Micro. Theory Technol. 39, 1595–1601 (1991)
[CrossRef]

K. Masanori, T. Yauhide, and N. Masahiro, Finite-element modeling of broad-band traveling-wave optical modulators, IEEE Trans. Micro. Theory Technol. 47, 1627–1633(1999)
[CrossRef]

J. Lightwave Technol. (3)

G.K. Gopalakrishnan, W.K. Burns, R.W. McElhanon, C.H. Bulmer, and A.S. Greenblatt, “Performace and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1819 (1994)
[CrossRef]

C.M. Kim and R.V. Ramaswamy, “Overlap intergral factors in intergrated optic modulators and switches,” J. Lightwave Technol. 7, 1063–1070 (1989)
[CrossRef]

J.C. Yi, S.H. Kim, and S.S. Choi, “Finite-element method for the impedance analysis of traveling-wave modulators,” J. Lightwave Technol. 8, 817–822(1990)
[CrossRef]

Japanese J. App. Phys. (1)

H. Miyamoto, O. Hiroshi, T. Kazuhiko, H. Iwaoka, and Y. Miyagawa, “A broadband traveling-wave Ti:LiNbO3 optical phase modulator,” Japanese J. App. Phys. 30, L383–L385 (1991)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a)Top view of the novel modulator. (b) Cross-sectional view of the novel modulator.

Fig. 2.
Fig. 2.

Electric field contour of the novel modulator.

Fig. 3.
Fig. 3.

Geometrical parameters of the novel modulator.

Fig. 4.
Fig. 4.

Nm and Z as g varies for different W (with t=4um)

Fig. 5.
Fig. 5.

Nm and Z as t varies (with W=4µm and g=5µm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V π = g λ 2 n e 3 γ 33 Γ L
Z = 1 c ( C C 0 ) 1 2
Δ f · L = 2 c π ( N m N 0 )
C = 1 V 0 2 S ε φ 2 d S

Metrics