Abstract

The use of ultra-broadband supercontinuum generated by an all-fiber system to characterize high-index contrast photonic circuits over the wavelength range 1.2–2.0 µm is demonstrated. Efficient, broadband waveguide coupling techniques and sensitive normalized detection enable rapid and high-resolution measurements of nano-scale one-dimensional photonic crystal microcavities. Experimental mappings of bandgaps and cavity mode resonances with a wavelength resolution of 0.1 nm compare well with computer simulations.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Binbin Zhou, Morten Bache, Dariusz Pysz, Ole Bang, and Ryszard Buczyński
Opt. Express 24(26) 29406-29416 (2016)

Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs

Ziyang Zhang and Min Qiu
Opt. Express 12(17) 3988-3995 (2004)

Spectrally smooth supercontinuum from 350 nm to 3 µm in sub-centimeter lengths of soft-glass photonic crystal fibers.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell
Opt. Express 14(11) 4928-4934 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
    [Crossref]
  2. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
    [Crossref]
  3. R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
    [Crossref]
  4. M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
    [Crossref]
  5. M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
    [Crossref] [PubMed]
  6. Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
    [PubMed]
  7. H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
    [Crossref]
  8. K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
    [Crossref]
  9. S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  10. K.S. Kunz and R.J. Luebbers, “The finite-difference time-domain method for electromagnetics,” (CRC Press: Boca Raton, 1993).
  11. M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
    [Crossref]

2004 (1)

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

2003 (1)

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

2002 (3)

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

2001 (1)

1997 (2)

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

1995 (1)

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

Albert, J.P.

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

Baumberg, J.J.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Cassagne, D.

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

Charlton, M.

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Charlton, M.D.C.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

Fan, S.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Ferrera, J.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Finlayson, C.E.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Foresi, J.S.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Fukasawa, Y.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Hanada, T.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Hatakeyama, H.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

Haus, H.A.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

Ippen, E.P.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

Ito, S.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Joannopoulos, J.D.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Johnson, S.G.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

S.G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Kaliteevski, M.A.

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

Kimerling, L.C.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Kunz, K.S.

K.S. Kunz and R.J. Luebbers, “The finite-difference time-domain method for electromagnetics,” (CRC Press: Boca Raton, 1993).

Kuroiwa, Y.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Lidorikis, E.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

Luebbers, R.J.

K.S. Kunz and R.J. Luebbers, “The finite-difference time-domain method for electromagnetics,” (CRC Press: Boca Raton, 1993).

Luo, C.

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

Manzanares Martinez, J.

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

Matsumoto, H.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

Matsumura, K.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

Neal, R.T.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

Nelson, L.E.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

Netti, M.C.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Ochiai, K.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Ohara, S.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Parker, G.

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Parker, G.J.

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

Pendry, J.B.

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

Qi, M.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

Rakich, P.T.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

Shiraishi, K.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

Smith, H.I.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Steinmeyer, G.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Sugimoto, N.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Tamura, K.

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

Tanabe, S.

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Thoen, E.R.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Villeneuve, P.R.

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Wilkinson, J.

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Zoorob, M.

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

Appl. Phys. Lett. (2)

R.T. Neal, M.D.C. Charlton, G.J. Parker, C.E. Finlayson, M.C. Netti, and J.J. Baumberg, “Ultrabroadband transmission measurements on waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 83, 4598 (2003).
[Crossref]

M.C. Netti, C.E. Finlayson, J.J. Baumberg, M. Charlton, M. Zoorob, J. Wilkinson, and G. Parker,” Separation of photonic crystal waveguides modes using femtosecond time-of-flight” Appl. Phys. Lett. 81, 3927 (2002).
[Crossref]

IEEE J. Quant. Electron. (1)

H.A. Haus, K. Tamura, L.E. Nelson, and E.P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quant. Electron. 31, 591 (1995).
[Crossref]

J. Lightwave Technol. (1)

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol. 15, 1042–50 (1997).
[Crossref]

Nature (2)

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, “A three-dimensional optical photonic crystal with designed point defects” Nature 429, 538 (2004).
[Crossref] [PubMed]

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, and E.P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B,  65, 201104 (2002).
[Crossref]

M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, and J.P. Albert, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Phys. Rev. B 66, 113101 (2002).
[Crossref]

Other (2)

K.S. Kunz and R.J. Luebbers, “The finite-difference time-domain method for electromagnetics,” (CRC Press: Boca Raton, 1993).

Y. Kuroiwa, N. Sugimoto, K. Ochiai, S. Ohara, Y. Fukasawa, S. Ito, S. Tanabe, and T. Hanada, “Fusion spliceable and high efficient Bi2O3-based EDF for short length and broadband amplification pumped at 1480 nm,” Proc. 26th Optical Fiber Communication Conference, Post Conference Edition, Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2001), pp. TuI5-1-3.
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Diagram of fiber laser consisting of bi-directionally pumped segment of Bi-EDF fiber and LNL-SMF. A length to LNL-SMF is used to compress the pulses to 100 fs. (b) An autocorrelation of the laser pulses after compression.

Fig. 2.
Fig. 2.

(a) A schematic of measurement apparatus. A small fraction of SC light is diverted by a coupler for reference (Ref) measurement while the remainder (Signal) is passed through the waveguide. (b) spectrum at fiber laser output (dotted) and a characteristic SC spectrum generated by the HNL-DSF (solid). The apparent roll-off of SC spectrum at 2 µm is due to decreasing photodetector response. The SC spectral measurement was taken with optical spectrum analyzer (1150–1700 nm) and spectrometer (1700–1980 nm).

Fig. 3.
Fig. 3.

(a) Band diagram (TE-like bands only) based on SEM measurements of device. Grey region indicates states above the light line. (b) SEM of microcavity (top) and cross-section of waveguide (bottom). Device parameters extracted from SEM are a=424 nm, ad =649 nm, w=494 nm, tg =195 nm, to =350 nm, and D=179 nm. (c) A transmission measurement (solid) and simulated transmission (dashed) of photonic crystal microcavity (TE polarization). The transmission measurement is normalized to that of a similar waveguide without etched holes. (d) High resolution (0.1 nm) measurement (solid) and simulation (dashed) of the microcavity resonance.

Metrics