Abstract

The first Raman laser with intra-cavity electronic switching is demonstrated. Digital control of intra-cavity gain is attained by using a diode gain cavity. In contrast to traditional Raman lasers, the Raman laser reported here is made from pure silicon and can be directly modulated to transmit data. Room temperature operation with 2.5W peak laser output power is demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Claps, D. Dimitropoulos, and B. Jalali, �??Stimulated Raman scattering in silicon waveguides,�?? Electronics Lett. 38, 1352-1354 (2002).
    [CrossRef]
  2. Ozdal Boyraz and Bahram Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269-5273 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>
    [CrossRef] [PubMed]
  3. R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, �??A fiber Raman ring laser,�?? IEEE J. Quantum Electronics QE-14, 860-862, (1978).
    [CrossRef]
  4. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, �??Ultralow-threshold Raman laser using spherical dielectric microcavity,�?? Nature 415, 621-623, (2002).
    [CrossRef] [PubMed]
  5. A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, �??On cavity modification of stimulated Raman scattering,�?? J. of Opt. B 5, 272-278 (2003).
    [CrossRef]
  6. Soref, R.A., Bennett, B. R., �??Electrooptical effects in silicon,�?? IEEE J. Quantum Electronics 23, 123-129, (1987).
    [CrossRef]
  7. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).
  8. C.A.,Barrios, V.R.,de Almeida, M.,Lipson, �??Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,�?? J. Lightwave Technol. 21, 1089-1098, (2003).
    [CrossRef]
  9. A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  10. Ozdal Boyraz, Dimitri Dimitropoulos and Bahram Jalali, �??Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,�?? IEICE Electron. Express 1, 435-441, (2004).
    [CrossRef]
  11. P. Koonath, T. Indukuri and B. Jalali, �??Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,�?? Appl. Phys. Lett. 85, 1018-1020, (2004).
    [CrossRef]
  12. Ming-Chang M. Lee and Ming C. Wu, �??A MEMS-Actuated Tunable Microdisk Resonator,�?? Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3
  13. G.T., Reed, S.P.,Chan, W.,Headley, V.M.N., Passaro, L A.,iu. and M., Paniccia, �??Polarization independent devices in small SOI waveguides,�?? Proc. of Int. Conf. on Group IV photonics, FB5, (2004).
  14. T.K. Liang, H.K. Tsang; �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
    [CrossRef]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in Silicon waveguides,�?? Opt. Express 12, 2774-2780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett. (2)

P. Koonath, T. Indukuri and B. Jalali, �??Vertically-coupled microdisk resonators realized using three-dimensional sculpting in Silicon,�?? Appl. Phys. Lett. 85, 1018-1020, (2004).
[CrossRef]

T.K. Liang, H.K. Tsang; �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84, 2745-2747 (2004).
[CrossRef]

Electronics Lett. (1)

R. Claps, D. Dimitropoulos, and B. Jalali, �??Stimulated Raman scattering in silicon waveguides,�?? Electronics Lett. 38, 1352-1354 (2002).
[CrossRef]

IEEE Intl. Conf. on Optical MEMS (1)

Ming-Chang M. Lee and Ming C. Wu, �??A MEMS-Actuated Tunable Microdisk Resonator,�?? Proceedings of IEEE International Conference on Optical MEMS, 2003, MC3

IEEE J. Quantum Electronics (2)

R.H. Stolen, C. Lin, J. Shah, and R.F. Leheny, �??A fiber Raman ring laser,�?? IEEE J. Quantum Electronics QE-14, 860-862, (1978).
[CrossRef]

Soref, R.A., Bennett, B. R., �??Electrooptical effects in silicon,�?? IEEE J. Quantum Electronics 23, 123-129, (1987).
[CrossRef]

IEICE Electron. Express (1)

Ozdal Boyraz, Dimitri Dimitropoulos and Bahram Jalali, �??Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser,�?? IEICE Electron. Express 1, 435-441, (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. of Opt. B (1)

A.B. Matsko, A.A. Savchenkov, R.J. Letargat, V.S. Ilchenko, and L. Maleki, �??On cavity modification of stimulated Raman scattering,�?? J. of Opt. B 5, 272-278 (2003).
[CrossRef]

Nature (2)

A.S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, �??Ultralow-threshold Raman laser using spherical dielectric microcavity,�?? Nature 415, 621-623, (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. of Int. Conf. on Group IV photon. (1)

G.T., Reed, S.P.,Chan, W.,Headley, V.M.N., Passaro, L A.,iu. and M., Paniccia, �??Polarization independent devices in small SOI waveguides,�?? Proc. of Int. Conf. on Group IV photonics, FB5, (2004).

Other (1)

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The experimental setup used for electronically switched silicon Raman laser. A diode laser cavity is used as a gain medium. By using an external current supply the laser output is electronically controlled.

Fig. 2.
Fig. 2.

Input-output characteristic of the silicon Raman laser exhibiting a sharp threshold at 9W peak pump pulse power. Inset shows the geometry of the device used in our experiments.

Fig. 3.
Fig. 3.

Measured coherent anti-Stokes emission at 1443 nm. Wavelength of anti-Stokes emission matches the expected 15.6 THz up shifting of the 1560 nm pump laser.

Fig. 4.
Fig. 4.

Demonstration of electronic switching of the silicon Raman laser. 2.5 mA peak current with 200 ps rise and fall times is applied to the on-chip diode.

Fig. 5.
Fig. 5.

Electronic modulation results of the silicon Raman laser.

Metrics