Abstract

Second harmonic generation (SHG) has been obtained in a sample of Ga5Ge20Sb10S65 glass submitted to a thermal poling treatment. An original characterization method is used for the determination of the induced second-order nonlinear profile. A reproducible χ (2) susceptibility of 4.4±0.4 pm/Volt was achieved for specific poling conditions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N.M. Lawandy and M.D. Selker, �??Observation of seeded second harmonic generation in bulk germanosilicate fiber performs,�?? Opt. Commun. 77, 339-342 (1990).
    [CrossRef]
  2. R.A. Myers, N. Mukherjee, and S.R.J. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  3. N.M. Lawandy, R.L. Mac Donald, �??Optically encoded phase-matched second-harmonic generation in semiconductor-microcrystallite-doped glasses,�?? J. Opt. Soc. Am. B 8, 1307-1314 (1991).
    [CrossRef]
  4. Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, F. Gan, �??Second-harmonic generation in Ge-As-S glasses by electron beam irradiationand analysis of the poling mechanism,�?? Opt. Commun. 198, 187-192 (2001).
    [CrossRef]
  5. J. Qiu, J. Si, and K. Hirao, �??Photoinduced stable second-harmonic generation in chalcogenide glasses,�?? Opt. Lett. 26, 914-916 (2001).
    [CrossRef]
  6. E. Lopez-Lago, V. Couderc, L. Griscom, F. Smektala, and A. Bathélémy, �??All-optical poling of a chalcohalogenide glass,�?? Opt. Mater. 16, 413-416 (2001).
    [CrossRef]
  7. J. Varga, Y. Szingvari, E. Ferenctchi, �??IR-poled second-harmonic generation in glass,�?? Opt. Laser Technol. 34, 471-473 (2002).
    [CrossRef]
  8. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, �??Linear optical characterization of chalcogenide glasses,�?? Opt. Commun. 230, 331-336 (2004).
    [CrossRef]
  9. P.D. Maker, R.W. Terhune, M. NIsenoff, C.M. Savage, �??Effects of dispersion and focusing on the production of optical harmonics,�?? Phys. Rev. Lett. 8, 21-23 (1962).
    [CrossRef]
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  11. Y. Quiquempois, N. Godbout, S. Lacroix, �??Model of charge migration during thermal poling in silica glasses Evidence of a voltage threshold for the onset of a second-order nonlinearity,�?? Phys. Rev. A 65, 043816 (2002).
    [CrossRef]
  12. Y. Quiquempois, �??Création et caractérisation d�??une susceptibilité non-linéaire d�??ordre deux dans les verres massifs et les fibres optiques à base de silice,�?? PhD Thesis, Université des Sciences et Technologies de Lille 1, 1999.

Appl. Phys. Lett. (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, �??Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,�?? Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

J. Opt. Soc. Am. B. (1)

N.M. Lawandy, R.L. Mac Donald, �??Optically encoded phase-matched second-harmonic generation in semiconductor-microcrystallite-doped glasses,�?? J. Opt. Soc. Am. B 8, 1307-1314 (1991).
[CrossRef]

Opt. Commun. (3)

Q. Liu, X. Zhao, K. Tanaka, A. Narazaki, K. Hirao, F. Gan, �??Second-harmonic generation in Ge-As-S glasses by electron beam irradiationand analysis of the poling mechanism,�?? Opt. Commun. 198, 187-192 (2001).
[CrossRef]

N.M. Lawandy and M.D. Selker, �??Observation of seeded second harmonic generation in bulk germanosilicate fiber performs,�?? Opt. Commun. 77, 339-342 (1990).
[CrossRef]

G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, �??Linear optical characterization of chalcogenide glasses,�?? Opt. Commun. 230, 331-336 (2004).
[CrossRef]

Opt. Laser Technol. (1)

J. Varga, Y. Szingvari, E. Ferenctchi, �??IR-poled second-harmonic generation in glass,�?? Opt. Laser Technol. 34, 471-473 (2002).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

E. Lopez-Lago, V. Couderc, L. Griscom, F. Smektala, and A. Bathélémy, �??All-optical poling of a chalcohalogenide glass,�?? Opt. Mater. 16, 413-416 (2001).
[CrossRef]

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, S. Lacroix, �??Model of charge migration during thermal poling in silica glasses Evidence of a voltage threshold for the onset of a second-order nonlinearity,�?? Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

P.D. Maker, R.W. Terhune, M. NIsenoff, C.M. Savage, �??Effects of dispersion and focusing on the production of optical harmonics,�?? Phys. Rev. Lett. 8, 21-23 (1962).
[CrossRef]

Other (1)

Y. Quiquempois, �??Création et caractérisation d�??une susceptibilité non-linéaire d�??ordre deux dans les verres massifs et les fibres optiques à base de silice,�?? PhD Thesis, Université des Sciences et Technologies de Lille 1, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

MF pattern obtained for two samples of Ga5Ge20Sb10S65 from two different batches. The samples have been poled under the same conditions.

Fig. 2.
Fig. 2.

SH signals obtained after poling at 230°C (full squares), 250°C (open squares), 270°C (full triangles) and 290°C (open triangles). The applied voltage is 4 kV and the poling duration is 30 minutes.

Fig. 3.
Fig. 3.

Remaining SH signal after successive etching operations. The filled dots represent experimental points. The black line represents the best theoretical fit.

Fig. 4.
Fig. 4.

Reconstructed nonlinear χ (2) susceptibility as a function of the depth under the anode.

Fig. 5.
Fig. 5.

Experimental SH power recorded using MF method (full squares). The line stands for the SH power calculated by using the nonlinear spatial distribution shown in Fig.4

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω ( x ) = a . [ 1 + exp ( x b c ) ] 4
P c , 2 ω = 2 ω 2 ε o c 3 n 2 ω n ω 2 P c , ω 2 π w 0 2 . tan 2 θ i 0 l χ ( 2 ) ( x ) . exp ( j π . x L c . cos θ i ) . d x 2 . T ( θ i )

Metrics