Abstract

Ultra short long-period gratings (LPGs) fabricated using the electric arc discharge method are demonstrated with regular single-mode fibers. The gratings were as short as two periods, which were the shortest LPGs ever reported. The evolution of this short gratings and their characteristics are investigated in this paper. The excellent bending insensitivity and high temperature robustness demonstrated by this unique LPG make it particularly suitable for harsh environment sensing and communication.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler and A. M. Vengsarkar, �??Long-period fibre grating fabrication with focused CO2 laser pulses,�?? Electron. Lett. 34, 302-303 (1998).
    [CrossRef]
  2. In Kag Hwang, Seok Hyun Yun, and Byoung Yoon Kim, �??Long-period fiber gratings based on periodic microbends,�?? Opt. Lett. 24, 1263-1265 (1999).
    [CrossRef]
  3. C. Y. Lin and Lon A. Wang, �??A Wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,�?? IEEE Photon. Technol. Lett. 13, 332-334 (2001).
    [CrossRef]
  4. Francis Hindle, et al., �??Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation,�?? IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
    [CrossRef]
  5. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, �??Structural long-period gratings in photonic crystal fibers,�?? Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  6. Yinian Zhu, Ping Shum, Joo-Hin Chong, M. K. Rao, and Chao Lu, �??Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber,�?? Opt. Lett. 28, 2467-2469 (2003).
    [CrossRef] [PubMed]
  7. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, �??High-temperature stability of long-period fiber gratings produced using an electric arc,�?? J. Lightwave. Technol. 19, 1574-1579 (2001).
    [CrossRef]
  8. Turan Erdogan, �??Fiber Grating Sectra,�?? J. Lightwave. Technol. 15, 1277-1294 (1997).
    [CrossRef]
  9. Trevor W. MacDougall, Saeed Pilevar, Charles W. Haggans, and Marvin A. Jackson, �??Generalized expression for the growth of long period gratings,�?? IEEE Photon. Technol. Lett. 10, 1449-1451 (1998).
    [CrossRef]
  10. H. J. Patrick, C. C. Chang and S. T. Vohra, �??Long period fibre gratings for structural bend sensing,�?? Electron. Lett. 34, 1773-1775 (1998).
    [CrossRef]
  11. C. C. Ye, S. W. James, and R. P. Tatam, �??Simultaneous temperature and bend sensing with long-period fiber gratings,�?? Opt. Lett. 25, 1007-1009 (2000).
    [CrossRef]
  12. Gregory D. Van Wiggeren et al., �??Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,�?? Opt. Lett. 26, 61-63 (2001).
    [CrossRef]

Electron. Lett. (2)

H. J. Patrick, C. C. Chang and S. T. Vohra, �??Long period fibre gratings for structural bend sensing,�?? Electron. Lett. 34, 1773-1775 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler and A. M. Vengsarkar, �??Long-period fibre grating fabrication with focused CO2 laser pulses,�?? Electron. Lett. 34, 302-303 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Y. Lin and Lon A. Wang, �??A Wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,�?? IEEE Photon. Technol. Lett. 13, 332-334 (2001).
[CrossRef]

Francis Hindle, et al., �??Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation,�?? IEEE Photon. Technol. Lett. 16, 1861-1863 (2004).
[CrossRef]

Trevor W. MacDougall, Saeed Pilevar, Charles W. Haggans, and Marvin A. Jackson, �??Generalized expression for the growth of long period gratings,�?? IEEE Photon. Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

J. Lightwave. Technol. (2)

G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, �??High-temperature stability of long-period fiber gratings produced using an electric arc,�?? J. Lightwave. Technol. 19, 1574-1579 (2001).
[CrossRef]

Turan Erdogan, �??Fiber Grating Sectra,�?? J. Lightwave. Technol. 15, 1277-1294 (1997).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for LPFG fabrication.

Fig. 2.
Fig. 2.

Evolution of the short arc-written LPFG.

Fig. 3.
Fig. 3.

Optical microscope image of short arc-written LPFG.

Fig. 4.
Fig. 4.

LPFG spectra with different arc durations. (a) 278ms, 11 periods (b) 313ms, 7 periods (c) 357ms, 4 periods (d) 417ms, 2 periods

Fig. 5.
Fig. 5.

Bending response of the short LPFG. (a) spectrums of the short LPFG with different bending curvatures (unit: m-1) (b) The change of the resonant peaks’ depth with different bending orientation

Fig. 6.
Fig. 6.

The high temperature response of the ultra short LPFG.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( β co + σ co co ) ( β ν j clad + σ ν j ν j ) = π Λ
σ co co ( z ) = ω ε o n 2 δ n ( z ) ¯ dx dy δ n ( x , y ) e co ( x , y ) · e co * ( x , y )
σ ν j ν j ( z ) = ω ε o n 2 δ n ( z ) ¯ dx dy δ n ( x , y ) e ν j ( x , y ) · e ν j * ( x , y )
δ n co eff ( x , y ) = dx dy δ n ( x , y ) e co co ( x , y ) · e co co ( x , y ) dx dy e co co ( x , y ) · e co co ( x , y )
δ n ν j eff ( x , y ) = dx dy δ n ( x , y ) e ν j ν j ( x , y ) · e ν j ν j ( x , y ) dx dy e ν j ν j ( x , y ) · e ν j ν j ( x , y )
λ max = [ n eff , co ( λ max ) ( n eff , cl n ( λ max ) + δ n ( z ) ¯ ( δ n co eff δ n ν j eff ) ] Λ

Metrics