Abstract

In this paper a polarization-independent wavelength-switchable flat-top fiber comb filter is newly proposed, which is based on a Solc type birefringence combination and polarization-diversity loop configuration. The proposed filter consists of a polarization beam splitter, two concatenated polarization-maintaining fibers, and two half-wave plates. Our theoretical analysis shows that the proposed apparatus has a much flatter passband and sharper notch than the conventional Sagnac birefringence filter. Particularly, by interchanging the Solc type birefringence combination within the filter between the folded and fan designs, channel wavelength switching operation, more specifically channel interleaving operation, can be achieved through the proper adjustment of the half-wave plates contained within the apparatus. Theoretical prediction was verified by experimental demonstration.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. X. Fang and R. O. Claus, �??Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,�?? Opt. Lett. 20, 2146-2148 (1995).
    [CrossRef] [PubMed]
  2. C.-S. Kim, R. M. Sova, and J.-U. Kang, �??Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,�?? Opt. Commun. 218, 291-295 (2003).
    [CrossRef]
  3. Y. W. Lee, J. Jung, and B. Lee, �??Multiwavelength-switchable SOA-fiber ring laser based on polarizationmaintaining fiber loop mirror and polarization beam splitter,�?? IEEE Photon. Technol. Lett. 16, 54-56 (2004).
    [CrossRef]
  4. M. P. Fok, K. L. Lee, and C. Shu, �??Dynamic waveband switching in semiconductor optical amplifier fiber ring laser based multi-wavelength source,�?? Technical digest, ECOC 2004, Mo3.4.6, Stockholm, Sweden (2004).
  5. S. Li, K. S. Chiang, and W. A. Gambling, �??Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,�?? Appl. Phys. Lett. 76, 3676-3678 (2000).
    [CrossRef]
  6. G. Zhu, Q. Wang, H. Chen, H. Dong, and N. K. Dutta, �??High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser,�?? IEEE J. Quantum Eelectron. 40, 721-725 (2004).
    [CrossRef]
  7. X. Fang, K. Demarest, H. Ji, C. T. Allen, and L. Pelz, �??A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 9, 1490-1492 (1997).
    [CrossRef]
  8. G. Rossi, O. Jerphagnon, B. -E. Olsson, and D. J. Blumenthal, �??Optical SCM data extraction using a fiberloop mirror for WDM network systems,�?? IEEE Photon. Technol. Lett. 12, 897-899 (2000).
    [CrossRef]
  9. J. W. Evans, �??The birefringent filter,�?? J. Opt. Soc. Am. 39, 229-242 (1949).
    [CrossRef]
  10. I. Solc, �??Birefringent chain filters,�?? J. Opt. Soc. Am. 55, 621-625 (1965).
    [CrossRef]
  11. S. E. Harris, E. O. Ammann, and I. C. Chang, �??Optical network synthesis using birefringence crystals. I. Synthehesis of lossless networks of equal-length cystals,�?? J. Opt. Soc. Am. 54, 1267-1279 (1964).
    [CrossRef]
  12. C. F. Buhrer, �??Synthesis and tuning of high-order Solc-type birefringence filters,�?? Appl. Opt. 33, 2249- 2254 (1994).
    [CrossRef] [PubMed]
  13. R. M. Sova, C.-S. Kim, and J.-U. Knag, �??Tunable all-fiber birefringence comb filters,�?? Technical digest, OFC 2002, ThGG61, Anaheim, USA (2002).
  14. C.-S. Kim and J.-U. Kang, �??Multiwavelength switching of Raman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-Sagnac filter,�?? Appl. Opt. 43, 3151-3157 (2004).
    [CrossRef] [PubMed]
  15. X. Fang, H. Ji, C. T. Allen, K. Demarest, and L. Pelz, �??A compound high-order polarization-independent birefringence filter using Sagnac interferometers,�?? IEEE Photon. Technol. Lett. 9, 458-460 (1997).
    [CrossRef]
  16. Z. Jia, M. Chen, and S. Xie, �??Label erasing technique employing Lyot-Sagnac filter,�?? Electron. Lett. 38, 1563-1564 (2002).
    [CrossRef]
  17. Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, �??Generation of wavelengthswitched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,�?? IEEE Photon. Technol. Lett. 14, 774-776 (2002).
    [CrossRef]
  18. Y. W. Lee, K. J. Han, B. Lee, and J. Jung, �??Polarization-independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration,�?? Opt. Express 11, 3359-3364 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3359.
    [CrossRef] [PubMed]
  19. K. L. Lee, M. P. Fok, S. M. Wan, and C. Shu, �??Optically controlled Sagnac loop comb filter,�?? Opt. Express 12, 6335-6340 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6335.
    [CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Li, K. S. Chiang, and W. A. Gambling, �??Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror,�?? Appl. Phys. Lett. 76, 3676-3678 (2000).
[CrossRef]

Electron. Lett. (1)

Z. Jia, M. Chen, and S. Xie, �??Label erasing technique employing Lyot-Sagnac filter,�?? Electron. Lett. 38, 1563-1564 (2002).
[CrossRef]

IEEE J. Quantum Eelectron. (1)

G. Zhu, Q. Wang, H. Chen, H. Dong, and N. K. Dutta, �??High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser,�?? IEEE J. Quantum Eelectron. 40, 721-725 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

X. Fang, K. Demarest, H. Ji, C. T. Allen, and L. Pelz, �??A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 9, 1490-1492 (1997).
[CrossRef]

G. Rossi, O. Jerphagnon, B. -E. Olsson, and D. J. Blumenthal, �??Optical SCM data extraction using a fiberloop mirror for WDM network systems,�?? IEEE Photon. Technol. Lett. 12, 897-899 (2000).
[CrossRef]

Y. W. Lee, J. Jung, and B. Lee, �??Multiwavelength-switchable SOA-fiber ring laser based on polarizationmaintaining fiber loop mirror and polarization beam splitter,�?? IEEE Photon. Technol. Lett. 16, 54-56 (2004).
[CrossRef]

X. Fang, H. Ji, C. T. Allen, K. Demarest, and L. Pelz, �??A compound high-order polarization-independent birefringence filter using Sagnac interferometers,�?? IEEE Photon. Technol. Lett. 9, 458-460 (1997).
[CrossRef]

Y. Shiquan, L. Zhaohui, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, �??Generation of wavelengthswitched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror,�?? IEEE Photon. Technol. Lett. 14, 774-776 (2002).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun. (1)

C.-S. Kim, R. M. Sova, and J.-U. Kang, �??Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,�?? Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

M. P. Fok, K. L. Lee, and C. Shu, �??Dynamic waveband switching in semiconductor optical amplifier fiber ring laser based multi-wavelength source,�?? Technical digest, ECOC 2004, Mo3.4.6, Stockholm, Sweden (2004).

R. M. Sova, C.-S. Kim, and J.-U. Knag, �??Tunable all-fiber birefringence comb filters,�?? Technical digest, OFC 2002, ThGG61, Anaheim, USA (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometrical arrangements of the (a) folded and (b) fan Solc filters

Fig. 2.
Fig. 2.

(a) Schematic diagram of the proposed filter and (b) schematic of the propagating light path based on bulk-optic representation.

Fig. 3.
Fig. 3.

Calculated passband switching (interleaving) operation of the proposed filter. Solid line (Set I) has the interleaved relationship with the dotted one (Set II).

Fig. 4.
Fig. 4.

(a) Measured passband flattened transmission spectrum in a wavelength range of 20 nm and (b) measured passband switching (interleaving) operation of the proposed filter. In (b), solid line has the interleaved relationship with the dotted-line.

Fig. 5.
Fig. 5.

Measured transmission spectra for the passband bandwidth comparison: (a) 1 dB and (b) 3 dB bandwidth comparison. Solid and dotted lines show the transmission spectra of the proposed filter and conventional SBF without the Solc-type combination of the PMF’s, respectively.

Tables (3)

Tables Icon

Table 1. Two HWP combinations for interleaving operation and corresponding transmittances (i, j, and k are all integers)

Tables Icon

Table 2. Four general HWP combinations for four categories and corresponding transmittances

Tables Icon

Table 3. Measured 1 and 3 dB passband bandwidths and experimental and theoretical FOM’s

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t Solc , narrow = sin 2 θ sin 1 2 Γ sin N χ sin χ 2 ( cos χ = cos 2 θ sin 1 2 Γ ) in the folded design
t Solc , narrow = sin 2 θ sin 1 2 Γ sin N χ sin χ 2 ( cos χ = cos 2 θ sin 1 2 Γ ) in the fan design
t Solc , flat = 1 sin 2 θ sin 1 2 Γ sin N χ sin χ 2 ( cos χ = cos 2 θ sin 1 2 Γ ) in the folded design
t Solc , flat = 1 sin 2 θ sin 1 2 Γ sin N χ sin χ 2 ( cos χ = cos 2 θ cos 1 2 Γ ) in the fan design
T = [ 1 0 0 0 ] T HWP 2 ( θ h 2 ) T PMF 2 ( θ p 2 ) T PMF 1 ( θ p 1 ) T HWP 1 ( θ h 1 ) [ 1 0 0 0 ] ( CW )
+ [ 0 0 0 1 ] T HWP 1 ( θ h 1 ) T PMF 1 ( θ p 1 ) T PMF 2 ( θ p 2 ) T HWP 2 ( θ h 2 ) [ 0 0 0 1 ] ( CCW )
t filter = 1 2 [ 1 + sin 2 ( 2 θ h 1 θ p 1 ) cos 2 ( 2 θ h 2 θ p 1 ) + { cos 2 2 ( θ h 1 θ h 2 ) sin 2 2 ( θ h 1 θ h 2 ) } cos Γ
sin 2 ( 2 θ h 1 θ p 1 ) cos 2 ( 2 θ h 2 θ p 1 ) cos 2 Γ ]

Metrics