Abstract

an optical pulse controlled all-optical logic gate with multifunctional performance and asymmetric structure has been designed theoretically in SiGe/Si materials using multimode interference principle. By switching the optical signal to different input waveguide ports, the device can function as OR, NOT, NAND, and NOR gates simultaneously or individually. It is a kind of promising device for next generation logic optical circuits, ultrahigh speed signal processing, and future Si-based all-optical integrated circuits.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” IEEE J. Lightwave Technol. 19, 114–119 (2001).
    [Crossref]
  2. M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
    [Crossref]
  3. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
    [Crossref]
  4. H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
    [Crossref]
  5. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
    [Crossref]
  6. B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
    [Crossref]
  7. S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
    [Crossref]
  8. S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
    [Crossref]
  9. M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15, 1035–1037 (2003).
    [Crossref]
  10. M. W. Mohammed and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
    [Crossref]
  11. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
    [Crossref]
  12. L. B. Soldano and E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightware Technol. 13, 615–627 (1995).
    [Crossref]

2004 (2)

S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

2003 (3)

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15, 1035–1037 (2003).
[Crossref]

M. W. Mohammed and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

2002 (4)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

2001 (1)

L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” IEEE J. Lightwave Technol. 19, 114–119 (2001).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightware Technol. 13, 615–627 (1995).
[Crossref]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Assanto, G.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

Brzozowski, L.

L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” IEEE J. Lightwave Technol. 19, 114–119 (2001).
[Crossref]

Cai, Z.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Castro, M.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

Chaudhari, B. S.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Chua, S. J.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

Erasme, D.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

Fitzgerald, E. A.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Guo, H. C.

S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]

Ho, P. T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Inayoshi, H.

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

Jiang, S.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Johnson, E. G.

M. W. Mohammed and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

Li, B. J.

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

Luca, A. D.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

Mohammed, M. W.

M. W. Mohammed and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

Morishima, G.

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

Nagai, S.

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

Nakano, Y.

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15, 1035–1037 (2003).
[Crossref]

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

Peccianti, M.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

Penning, E. C. M.

L. B. Soldano and E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightware Technol. 13, 615–627 (1995).
[Crossref]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Sargent, E. H.

L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” IEEE J. Lightwave Technol. 19, 114–119 (2001).
[Crossref]

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightware Technol. 13, 615–627 (1995).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Soto, H.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

Takenaka, M.

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15, 1035–1037 (2003).
[Crossref]

Topomondzo, J. D.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

Tsai, C. W.

S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]

Tsao, S. L.

S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

Utaka, K.

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

Appl. Phys. Lett. (2)

M. Peccianti, C. Conti, G. Assanto, A. D. Luca, and C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002).
[Crossref]

B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. Jiang, and Z. Cai, “Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si,” Appl. Phys. Lett. 85, 1119–1121 (2004).
[Crossref]

IEEE J. Lightwave Technol. (2)

S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode interference photonic switches,” IEEE J. Lightwave Technol. 20, 675–681 (2002).
[Crossref]

L. Brzozowski and E. H. Sargent, “All-optical analog-to-digital converters, hardlimiters, and logic gates,” IEEE J. Lightwave Technol. 19, 114–119 (2001).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode nonlinear waveguide,” IEEE J. Quantum Electron. 38, 37–46 (2002).
[Crossref]

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

IEEE J. Selected Top. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P. T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Selected Top. Quantum Electron. 8, 705–713 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15, 1035–1037 (2003).
[Crossref]

M. W. Mohammed and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[Crossref]

J. Lightware Technol. (1)

L. B. Soldano and E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightware Technol. 13, 615–627 (1995).
[Crossref]

Opt. Commun. (2)

S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243–247 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed all-optical logic gate.

Fig. 2.
Fig. 2.

Cross section view of the waveguide.

Fig. 3.
Fig. 3.

BPM simulated optical fields with incident light beams having same wavelength and polarization.

Tables (7)

Tables Icon

Table 1. OR Logic Gate

Tables Icon

Table 2.1. NOT Logic Gate

Tables Icon

Table 2.2. NOT Logic Gate

Tables Icon

Table 2.3. NOT Logic Gate

Tables Icon

Table 2.4. NOT Logic Gate

Tables Icon

Table 3. NAND Logic Gate

Tables Icon

Table 4. NOR Logic Gate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a b ( q + 4 π b 4 π b ) 1 + 0.3 ( q + 4 π b q + 4 π r b ) 2 1 ( q + 4 π b q + 4 π r b ) 2 1
q = γ 0 n 1 2 n 0 2 + γ 2 n 1 2 n 2 2
2 ψ x 2 + 2 ψ y 2 + [ 2 π n ( x , y ) λ ] 2 ψ = β 2 ψ
ψ ( x , y , z ) = ν = 0 m 1 C ν ψ ν ( x , y ) exp [ j ( ω t β ν z ) ]
L = p ( 3 L π ) p = 0 , 1 , 2 ,

Metrics