Abstract

Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vπ. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gain-modulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43-44 (1994).
    [CrossRef]
  2. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, �??20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,�?? Opt. Lett. 24, 1209-1211 (1999).
    [CrossRef]
  3. M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9 ps actively modelocked fibre integrated laser at 1.3 μm," Electron. Lett. 33, 1630-1632 (1997).
    [CrossRef]
  4. M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580-1581 (2000).
    [CrossRef]
  5. L. Schares, L. Occhi, and G. Guekos, �??Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,�?? Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Long Beach MD, 2002), CML3., 56-57.
  6. G.-R. Lin, Y.-S. Liao, and G.-Q. Xia, �??Dynamics of Optical Backward Injection Indu ed Gain-Depletion Modulation and Mode-Locking of Semiconductor Optical Amplifier Fiber Laser,�?? Opt. Express 12, 2017-2025 (2004).
    [CrossRef] [PubMed]
  7. D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-Free Harmonically Mode- Locked Semiconductor-Fiber Ring Laser,�?? IEEE Photon. Technol. Lett. 11, 521-523 (1999).
    [CrossRef]
  8. J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504-1505 (2002) .
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).
  10. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  11. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, �??Efficient frequency doubling of a femtosecond fiber laser,�?? Opt. Lett. 21, 1759-1761 (1996).
    [CrossRef] [PubMed]
  12. K. A. Ahmed, H. H. Y Cheng, and H. F. Liu, �??Generation of 185fs pedestal-free pulses using a 1.55μm distributed feedback semiconductor laser,�?? Electron. Lett. 31, 195-196 (1995).
    [CrossRef]

CLEO 2002 (1)

L. Schares, L. Occhi, and G. Guekos, �??Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,�?? Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Long Beach MD, 2002), CML3., 56-57.

Electron. Lett. (5)

J. He and K. T. Chan, �??All-optical actively modelocked fibre ring laser based on cross-gain modulation in SOA,�?? Electron. Lett. 38, 1504-1505 (2002) .
[CrossRef]

D. M. Patrick, �??Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,�?? Electron. Lett. 30, 43-44 (1994).
[CrossRef]

M. J. Guy, J. R. Taylor and K. Wakita, �??10 GHz 1.9 ps actively modelocked fibre integrated laser at 1.3 μm," Electron. Lett. 33, 1630-1632 (1997).
[CrossRef]

M. W. K. Mak, H. K. Tsang, and H. F. Liu, �??Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,�?? Electron. Lett. 36, 1580-1581 (2000).
[CrossRef]

K. A. Ahmed, H. H. Y Cheng, and H. F. Liu, �??Generation of 185fs pedestal-free pulses using a 1.55μm distributed feedback semiconductor laser,�?? Electron. Lett. 31, 195-196 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, �??Relaxation-Free Harmonically Mode- Locked Semiconductor-Fiber Ring Laser,�?? IEEE Photon. Technol. Lett. 11, 521-523 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic diagram of the backward-optical-injection mode-locked SOAFL. ATT: attenuator; Amp: power amplifier; COMB: comb generator; DFBLD: distributed feedback laser diode. EDFA: erbium-doped fiber amplifier; ISO: optical isolator; OC: optical coupler; SOA: semiconductor optical amplifier; RFS: RF synthesizer.

Fig. 2.
Fig. 2.

The driving points of Mach-Zehnder modulator for (A) dark- and (B) bright-optical combs.

Fig. 3.
Fig. 3.

The (A) dark- and (B) bright-optical combs.

Fig. 4.
Fig. 4.

The backward optical injected (a) dark and (b) bright-optical combs, and their corresponding mode-locked SOAFL pulse-trains are shown in (c) and (d), respectively.

Fig. 5.
Fig. 5.

Comparison of SOAFL pulse shapes after mode-locking (dotted curve), linear dispersion compression (dashed curve) and nonlinear soliton compression (solid curve).

Fig. 6.
Fig. 6.

Lasing spectra of dark-optical comb mode-locked SOAFL pulse before (dotted curve) and after propagating through a 200-m DCF (dashed curve) and a 5-km SMF (solid curve).

Fig. 7.
Fig. 7.

The suppression of polarization-mode dispersion induced side-lobe in the auto-correlated trace of the backward optical-comb injection-mode-locked SOAFL pulse shapes. Dotted curve: the amplified mode-locked pulse shape after propagating through SMF. Dashed curve: partially controlled polarization mode by adjusting the polarization controller. Dash-dotted curve: nearly polarization mode dispersion free pulse shape. Solid curve: pedestal-free pulse shape via the fine adjustment of input power at DCF stage.

Metrics