Abstract

We investigate the bleaching of two-photon absorption by single-photon excitation using femtosecond transient absorption measurements on the prototypical polyfluorene (F8), and thus introduce single-photon pumping and two-photon probing spectroscopy for the determination of absorption cross-sections in an organic semiconductor. Single-photon excitation at 3.1 eV rearranges the population distributions on the singlet excited state (1Bu ) and on the ground state (1Ag ), and probe pulses at 1.55 eV will thus be absorbed both by the singlet excited state through a single-photon process and by the partially depopulated ground state for two-photon transition from 1Ag to mAg . As a result, the two-photon absorption will be partially bleached, introducing a modulation to the total transient absorption. Probe intensity dependence of the transient absorption enables simultaneous determination of the two-photon absorption (mAg1Ag ) and exciton absorption (kAg1Bu ) cross-sections at 1.55 eV.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongint, L. Porrest, and M. Blanchard-Descet, "Time-resolved stimulated emission depletion in two-photon excited states," Biochem. Soc. Trans.: Intermolecular Associations in 2D and 3D 31, 1047 (2003).
    [CrossRef]
  2. Saulius Juodkazis, Vygantas Mizeikis, Kock Khuen Seet, Masafumi Miwa, and Hiroaki Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846 (2005).
    [CrossRef]
  3. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, "Real-time two-photon confocal microscopy using a femtosecond, amplified, Ti:Sapphire system," J. Microscopy 181, 253 (1995).
    [CrossRef]
  4. T. Sun, Bosco K. K. Fung, I. K. Sou, G. K. L. Wong, K. S. Wong, and G. Lanzani, "Two-photon absorption autocorrelation of visible to ultraviolet femtosecond laser pulses using ZnS-based photodetectors," IEEE Photonics Technol. Lett. 14, 86 (2002).
    [CrossRef]
  5. A. Gambetta, T. Virgili, and G. Lanzani, "Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes," Appl. Phys. Lett. 86, 253509 (2005).
    [CrossRef]
  6. W. Blau and A. Penzkofer, "Intensity detection of picosecond ruby laser pulses by two photon absorption," Opt. Commun. 36, 419 (1981).
    [CrossRef]
  7. Guang S. He, Tzu-Chau Lin, and Paras N. Prasad, "New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation," Opt. Express 10, 566 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-566">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-566</a>
    [PubMed]
  8. N. Mukherjee, A. Mukherjee, B. A. Reinhardt, "Measurement of two-photon absorption cross sections of dye molecules doped in thin films of polymethylmethacrylate," Appl. Phys. Lett. 70, 1524 (1997).
    [CrossRef]
  9. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, E. W. Van Stryland, "Two-photon spectroscopy and analysis with a white-light continuum probe," Opt. Lett. 27, 270 (2002).
    [CrossRef]
  10. Guang S. He, Gen C. Xu, and Paras N. Prasad, "Two-photon absorption and optical limiting properties of novel organic compounds," Opt. Lett. 20, 435 (1994).
    [CrossRef]
  11. Mikhail Drobizhev, Yuriy Stepanenko, Yuliya Dzenis, Aliaksandr Karotki, Aleksander Rebane, Peter N. Taylor, and Harry L. Anderson, "Understanding Strong Two-Photon Absorption in -Conjugated Porphyrin Dimers via Double-Resonance Enhancement in a Three-Level Model," J. Am. Chem. Soc. 126, 15352(2004).
    [CrossRef] [PubMed]
  12. L. M. Herz and R. T. Phillips, "Effects of interchain interactions, polarization anisotropy, and photooxidation on the ultrafast photoluminescence decay from a polyfluorene," Phys. Rev. B 61, 13691 (2000).
    [CrossRef]
  13. Amena L. T. Khan, Paiboon Sreearunothai, Laura M. Herz, Michael J. Banach, and Anna Köhler, "Morphology-dependent energy transfer within polyfluorene thin films," Phys. Rev. B 69, 085201 (2004).
    [CrossRef]
  14. M. G. Harrison, G. Urbasch, R. F. Mahrt, H. Giessen, H. Bässler, and U. Scherf, "Two-photon fluorescence and femtosecond two-photon absorption studies of MeLPPP, a ladder-type poly(phenylene) with low intrachain disorder," Chem. Phys. Lett. 313, 755 (1999).
    [CrossRef]
  15. S. V. Frolov, Z. Bao, M. Wohlgenannt, and Z. V. Vardeny, "Ultrafast Spectroscopy of Even-Parity States in pi -Conjugated Polymers," Phys. Rev. Lett. 85, 2196 (2000).
    [CrossRef] [PubMed]
  16. Mark A. Stevens, Carlos Silva, David M. Russell, and Richard H. Friend, "Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-cobenzothiadiazole)," Phys. Rev. B 63, 165213 (2001).
    [CrossRef]

Appl. Phys. Lett. (2)

A. Gambetta, T. Virgili, and G. Lanzani, "Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes," Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

N. Mukherjee, A. Mukherjee, B. A. Reinhardt, "Measurement of two-photon absorption cross sections of dye molecules doped in thin films of polymethylmethacrylate," Appl. Phys. Lett. 70, 1524 (1997).
[CrossRef]

Biochem. Soc. Trans.: Intermolecular Ass (1)

A. J. Bain, R. J. Marsh, D. A. Armoogum, O. Mongint, L. Porrest, and M. Blanchard-Descet, "Time-resolved stimulated emission depletion in two-photon excited states," Biochem. Soc. Trans.: Intermolecular Associations in 2D and 3D 31, 1047 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

M. G. Harrison, G. Urbasch, R. F. Mahrt, H. Giessen, H. Bässler, and U. Scherf, "Two-photon fluorescence and femtosecond two-photon absorption studies of MeLPPP, a ladder-type poly(phenylene) with low intrachain disorder," Chem. Phys. Lett. 313, 755 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Sun, Bosco K. K. Fung, I. K. Sou, G. K. L. Wong, K. S. Wong, and G. Lanzani, "Two-photon absorption autocorrelation of visible to ultraviolet femtosecond laser pulses using ZnS-based photodetectors," IEEE Photonics Technol. Lett. 14, 86 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

Mikhail Drobizhev, Yuriy Stepanenko, Yuliya Dzenis, Aliaksandr Karotki, Aleksander Rebane, Peter N. Taylor, and Harry L. Anderson, "Understanding Strong Two-Photon Absorption in -Conjugated Porphyrin Dimers via Double-Resonance Enhancement in a Three-Level Model," J. Am. Chem. Soc. 126, 15352(2004).
[CrossRef] [PubMed]

J. Microscopy (1)

G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, "Real-time two-photon confocal microscopy using a femtosecond, amplified, Ti:Sapphire system," J. Microscopy 181, 253 (1995).
[CrossRef]

Nanotechnology (1)

Saulius Juodkazis, Vygantas Mizeikis, Kock Khuen Seet, Masafumi Miwa, and Hiroaki Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846 (2005).
[CrossRef]

Opt. Commun. (1)

W. Blau and A. Penzkofer, "Intensity detection of picosecond ruby laser pulses by two photon absorption," Opt. Commun. 36, 419 (1981).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

L. M. Herz and R. T. Phillips, "Effects of interchain interactions, polarization anisotropy, and photooxidation on the ultrafast photoluminescence decay from a polyfluorene," Phys. Rev. B 61, 13691 (2000).
[CrossRef]

Amena L. T. Khan, Paiboon Sreearunothai, Laura M. Herz, Michael J. Banach, and Anna Köhler, "Morphology-dependent energy transfer within polyfluorene thin films," Phys. Rev. B 69, 085201 (2004).
[CrossRef]

Mark A. Stevens, Carlos Silva, David M. Russell, and Richard H. Friend, "Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-cobenzothiadiazole)," Phys. Rev. B 63, 165213 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

S. V. Frolov, Z. Bao, M. Wohlgenannt, and Z. V. Vardeny, "Ultrafast Spectroscopy of Even-Parity States in pi -Conjugated Polymers," Phys. Rev. Lett. 85, 2196 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transition mechanisms related to the transient absorption in single-photon pumping (at 2ω) and two-photon probing (at 2ω) spectroscopy.

Fig. 2.
Fig. 2.

Absorption spectrum of the F8/p-Xylene solution with a concentration of 0.1 mg/ml. Inset: the chemical structure of F8.

Fig. 3.
Fig. 3.

Dependence of the TA dynamics on the probe (1.55 eV) intensities at a pump (3.1 eV) intensity of 96 μJ/cm2. The filled circles are TA dynamics measurements at 2 eV for the lifetime comparison. The calculation of the absorption cross-sections have been performed for a delay of 4 ps, as marked by the dash-dotted vertical line.

Fig. 4.
Fig. 4.

Pump intensity dependence of the TA dynamics at the two-photon frequency. The pump fluence at 3.1 eV was changed from 22 μJ/cm2 to 176 μJ/cm2 with the probe fluence at 1.55 eV fixed at (a) 199 μJ/cm2 and (b) 1.99 mJ/cm2, respectively. (c) Comparison between the measurements in (a) and (b) with the simulations using the measured absorption cross-sections.

Fig. 5.
Fig. 5.

Simulated contour lines showing the absolute values of the TA (|ΔT/T|) as a function of the pump and the probe fluences.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N 2 t = N 2 τ 2 + N 1 P 1
N 2 ( t ) = N 0 P 1 τ 2 1 + P 1 τ 2 [ 1 e ( 1 τ 2 + P 1 ) τ P ] · e ( t τ P ) τ 2 ,
N 3 t = N 3 τ 3 + N 1 P 2
N 2 t = N 2 τ 2 + N 3 τ 3 N 2 P 3
N 0 N 1 + N 2 + N 3
d I ω dz = β 1 I ω β 2 I ω 2 .
Δ T T = I ω on I ω off 1

Metrics