Abstract

The photonic band diagrams of the photonic crystal slabs (PCSs) with various structural air holes were calculated by plane wave expansion method with super cell method. The calculated results indicate that the PCSs with hexagonal or triangular air holes have enough large photonic band gaps in the guided mode spectrum, hence they are good candidates to be used for the PC devices. The PCs with hexagonal or triangular air holes were fabricated successfully on n-type GaAs (111)B substrate by selective-area metal organic vapor phase epitaxy (SA-MOVPE). Vertical and smooth facets are formed and the uniformities are very good. The same process was also used to fabricate hexagonal air hole arrays with the width of 100 nm successfully. A procedure was proposed and utilized to fabricate the air-bridge PCS with normal hexagonal air holes. The fabricated hexagonal air holes are very uniform and the sidewalls are smooth and vertical. Our experimental results indicate that SA-MOVPE growth is a promising low-damage fabrication method for PC devices and photonic nano-strucutres.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. M. Notomi, A. S. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561(2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551,</a>
    [CrossRef] [PubMed]
  4. L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Multimode-interference-type thermo-optic variable optical attenuator with a response frequency of 10 kHz," Opt. Eng. 42, 606-607 (2003).
    [CrossRef]
  5. L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, Z. M. Li, Y. L. Liu, and Q. M. Wang, "New type of multimode-interference-type thermo-optic optical variable attenuator," Opt. Eng. 43, 2497-2498 (2004).
    [CrossRef]
  6. Y. Sugimoto, Y. Tanaka, Y. Nakamura, K. Asakawa, and K. Inoue, "Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length," Opt. Express 12, 1090-1096 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090</a>
    [CrossRef] [PubMed]
  7. S. R. Sakamoto, C. Ozturk, Y. T. Byun, J. Ko, and N. Dagli, "Low-loss substrate-removed (SURE) optical waveguides in GaAs-AlGaAs epitaxial layers embedded in organic polymer," IEEE Photonics Technol. Lett. 10, 985-987 (1998).
    [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brein, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  9. O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, "Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP," J. Lightwave Technol. 17, 2082-2088 (1999).
    [CrossRef]
  10. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, "Tuning photonic crystal nanocavity modes by wet chemical digital wtching," Appl. Phys. Lett. 87, 021108-021111 (2005).
    [CrossRef]
  12. T. Hamano, H. Hirayama, and Y. Aoyagi, "New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy," Jpn. J. Appl. Phys. 36, L286-288 (1997).
    [CrossRef]
  13. J. Motohisa, J. Takeda, M. Inrai, J. Noborisaka, and T. Fukui, "Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE," Physica E 23, 298-304 (2004).
    [CrossRef]
  14. J. Motohisa, J. Noborisaka, J. Takeda, M. Inrai, and T. Fukui, "Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates," J. Crystal Growth 272, 180-185 (2004).
    [CrossRef]
  15. M. Inari, J. Takeda, J. Motohisa, and T. Fukui, "Selective area MOVPE growth of InP and InGaAs pillar structures for InP-based two-dimensional photonic crystals," Physica E 21, 620-624 (2004).
    [CrossRef]
  16. M. Akabori, J. Takeda, J. Motohisa, and T. Fukui, "InGaAs nano-pillar array formation on partially masked InP (111)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application," Nanotechnology 14, 1071-1074 (2003).
    [CrossRef]
  17. M. Akabori, J. Takeda, J. Motohisa, and T. Fukui, "Selective area MOVPE growth of two-dimensional photonic crystals having an air-hole array and its application to air-bridge-type structures," Physica E 13, 446-450 (2002).
    [CrossRef]
  18. J. Takeda, M. Akabori, J. Motohisa, and T. Fukui, "Formation of AlxGa1-xAs periodic array of micro-hexagonal pillars and air holes by selective area MOVPE," Appl. Surf. Sci. 190, 236-241 (2002).
    [CrossRef]
  19. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joanopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  20. S. G. Johnson and J. D. Joanopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  21. J. D. Joannopoulos, R. D. Meade, and J. N. Winn Photonic Crystals (Princeton University Press, New Jersey, 1995).
  22. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  23. L. Yang, J. Motohisa, and T. Fukui, "Photonic crystal slabs with hexagonal optical atoms and their application in waveguides," Jpn J. Appl. Phys. 44, 2531-2536 (2005).
    [CrossRef]
  24. Y. Tanaka, T. Asano, Y. Akahane, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
    [CrossRef]

Appl. Phys. Lett. (2)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, "Tuning photonic crystal nanocavity modes by wet chemical digital wtching," Appl. Phys. Lett. 87, 021108-021111 (2005).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

J. Takeda, M. Akabori, J. Motohisa, and T. Fukui, "Formation of AlxGa1-xAs periodic array of micro-hexagonal pillars and air holes by selective area MOVPE," Appl. Surf. Sci. 190, 236-241 (2002).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. R. Sakamoto, C. Ozturk, Y. T. Byun, J. Ko, and N. Dagli, "Low-loss substrate-removed (SURE) optical waveguides in GaAs-AlGaAs epitaxial layers embedded in organic polymer," IEEE Photonics Technol. Lett. 10, 985-987 (1998).
[CrossRef]

J. Crystal Growth (1)

J. Motohisa, J. Noborisaka, J. Takeda, M. Inrai, and T. Fukui, "Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates," J. Crystal Growth 272, 180-185 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Jpn J. Appl. Phys. (1)

L. Yang, J. Motohisa, and T. Fukui, "Photonic crystal slabs with hexagonal optical atoms and their application in waveguides," Jpn J. Appl. Phys. 44, 2531-2536 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Hamano, H. Hirayama, and Y. Aoyagi, "New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy," Jpn. J. Appl. Phys. 36, L286-288 (1997).
[CrossRef]

Nanotechnology (1)

M. Akabori, J. Takeda, J. Motohisa, and T. Fukui, "InGaAs nano-pillar array formation on partially masked InP (111)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application," Nanotechnology 14, 1071-1074 (2003).
[CrossRef]

Opt. Eng. (2)

L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Multimode-interference-type thermo-optic variable optical attenuator with a response frequency of 10 kHz," Opt. Eng. 42, 606-607 (2003).
[CrossRef]

L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, Z. M. Li, Y. L. Liu, and Q. M. Wang, "New type of multimode-interference-type thermo-optic optical variable attenuator," Opt. Eng. 43, 2497-2498 (2004).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joanopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Physica E (3)

M. Akabori, J. Takeda, J. Motohisa, and T. Fukui, "Selective area MOVPE growth of two-dimensional photonic crystals having an air-hole array and its application to air-bridge-type structures," Physica E 13, 446-450 (2002).
[CrossRef]

J. Motohisa, J. Takeda, M. Inrai, J. Noborisaka, and T. Fukui, "Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE," Physica E 23, 298-304 (2004).
[CrossRef]

M. Inari, J. Takeda, J. Motohisa, and T. Fukui, "Selective area MOVPE growth of InP and InGaAs pillar structures for InP-based two-dimensional photonic crystals," Physica E 21, 620-624 (2004).
[CrossRef]

Science (2)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brein, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn Photonic Crystals (Princeton University Press, New Jersey, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photonic gap maps in the guided mode spectrum for the PCSs with circular air holes (a), normal hexagonal air holes (b), orthogonal hexagonal air holes (c), square air holes (d), normal triangular air holes (e) and orthogonal triangular air holes (f). TE-like modes are shown in solid lines “—” and TM-like modes in dotted lines “…”.

Fig. 2.
Fig. 2.

Gap-mid and gap-ratio as the functions of the normalized sizes and filling fractions of the air holes. Solid square “■”is for the PCS with circular air holes, hollow square “□” for the PCS with normal hexagonal air holes, solid circle “●”for the PCS with orthogonal hexagonal air holes, Hollow circle “○” for the PCS with square air holes, solid triangle “▲” for the PCS with normal triangular air holes and hollow triangle “△” for the PCS with orthogonal triangular air holes.

Fig. 3.
Fig. 3.

SEM images for the patterned substrates of the PCs with normal hexagonal air holes (a), orthogonal hexagonal air holes (b), normal triangular air holes (c) and orthogonal triangular air holes (d).

Fig. 4.
Fig. 4.

SEM images for the fabricated PCs with normal hexagonal air holes (a), orthogonal hexagonal air holes (b), normal triangular air holes (c) and orthogonal triangular air holes (d).

Fig. 5.
Fig. 5.

(a) SEM image for the cross section of the fabricated PC with normal hexagonal air holes. (a) SEM image for the fabricated PC with normal hexagonal air holes. (b) and (c) SEM images for the fabricated PC waveguide with normal hexagonal air holes and the fabricated PC microcavity with normal hexagonal air holes. (d) SEM image for the fabricated PC with normal hexagonal air holes and a=200 nm and r=50 nm.

Fig. 6.
Fig. 6.

SEM images for the fabricated air-bridge PCS with hexagonal air holes (a=300 nm and r=90 nm) (a) and its cross section (b).

Metrics