Abstract

In this work, measurements and numerical field simulations highlighting the characteristic propagation behavior of THz surface-wave pulses along bare and dielectrically coated metal wires are presented. An optoelectronic time-domain measurement setup with a freely-positionable probe-tip is used for detection of electrical field transients after different propagation lengths along the wires. Frequency-dependent attenuation and dispersion parameters are determined in the range of 0.02 THz to 0.4 THz. Our results are in good agreement with numerical field simulations considering the propagation of an axial Sommerfeld surface-wave with metallic and dielectric losses. We discuss the influence of wire radius on wave propagation behavior and the application of THz single-wires for sensing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. H. Siegel, "Terahertz Technology in Biology and Medicine," IEEE Trans. Microw. Th. and Tech. 52, 2438-2447 (2004).
    [CrossRef]
  2. M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
    [CrossRef]
  3. C. A. Schmuttenmaer, "Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy," Chem. Rev. 104, 1759-1779 (2004).
    [CrossRef] [PubMed]
  4. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677, (2002).
    [CrossRef] [PubMed]
  5. M. M. Awad and R. A. Cheville, "Transmission terahertz waveguide-based imaging below the diffraction limit," Appl. Phys. Lett. 86, 221107/1-3 (2005).
    [CrossRef]
  6. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?," Proc. IEEE 93, 1722-1743 (2005).
    [CrossRef]
  7. K. Wang and M Mitteman, "Metall wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  8. H. Hertz, Gesammelte Werke (J. A. Barth , Leipzig, 1894).
  9. A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes," Ann. Phys. u. Chemie 67, 233 - 290 (1899).
  10. M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962).
    [CrossRef]
  11. F. Sobel, F. Wentworth and J. C. Wiltse, "Quasi-Optical Surface Waveguide and Other Components for the 100- to 300-Gc Region," IEEE Trans. MTT 9, 512-518 (1961).
    [CrossRef]
  12. G. Gallot, S. P. Jamison, R. W. McGowan, and D Grischkowsky, "Terahertz Waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  13. R. K. Hoffmann, Integrated Microwave Circuits (Springer, Berlin 1983).
  14. N. Marcuvitz, "Coaxial Waveguides" in Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 72-80.
  15. P. W. Hawkes, The Physics of Transmission Lines at High and Very High Frequencies (Academic Press, 1970).
  16. G. Goubau, "Surface Waves and Their Application to Transmission Lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  17. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
    [CrossRef]
  18. Y. Xu and R.G. Bosisio, "Study of Goubau lines for submillimetre wave and terahertz frequency applications," IEE Proc.-Microw. Antennas Propag. 151, 460-464 (2004).
    [CrossRef]
  19. F. E. Donay, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
    [CrossRef]
  20. Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005).
    [CrossRef] [PubMed]
  21. M. J. Hagmann, "Isolated Carbon Nanotubes as High-Impedance Transmission Lines for Microwave Through Terahertz Frequencies," IEEE Trans. Nanotech. 4, 289-296 (2005).
    [CrossRef]
  22. G. Goubau, Waves on interfaces. IRE Trans. on Ant. and. Prop. 7, 140-146 (1959).
    [CrossRef]
  23. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire using milled grooves," Opt. Express 13, 7028-7034 (2005).
    [CrossRef] [PubMed]
  24. H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low- dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
    [CrossRef]
  25. N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106/1-3 (2005).
    [CrossRef]

Ann. Phys. u. Chemie (1)

A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes," Ann. Phys. u. Chemie 67, 233 - 290 (1899).

Appl. Phys. Lett. (6)

M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002).
[CrossRef]

M. M. Awad and R. A. Cheville, "Transmission terahertz waveguide-based imaging below the diffraction limit," Appl. Phys. Lett. 86, 221107/1-3 (2005).
[CrossRef]

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005).
[CrossRef]

F. E. Donay, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987).
[CrossRef]

H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low- dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106/1-3 (2005).
[CrossRef]

Chem. Rev. (1)

C. A. Schmuttenmaer, "Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy," Chem. Rev. 104, 1759-1779 (2004).
[CrossRef] [PubMed]

IEE Proc.-Microw. Antennas Propag. (1)

Y. Xu and R.G. Bosisio, "Study of Goubau lines for submillimetre wave and terahertz frequency applications," IEE Proc.-Microw. Antennas Propag. 151, 460-464 (2004).
[CrossRef]

IEEE Trans. Ant. and Prop. (1)

M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962).
[CrossRef]

IEEE Trans. Microw. Th. and Tech. (1)

P. H. Siegel, "Terahertz Technology in Biology and Medicine," IEEE Trans. Microw. Th. and Tech. 52, 2438-2447 (2004).
[CrossRef]

IEEE Trans. MTT (1)

F. Sobel, F. Wentworth and J. C. Wiltse, "Quasi-Optical Surface Waveguide and Other Components for the 100- to 300-Gc Region," IEEE Trans. MTT 9, 512-518 (1961).
[CrossRef]

IEEE Trans. Nanotech. (1)

M. J. Hagmann, "Isolated Carbon Nanotubes as High-Impedance Transmission Lines for Microwave Through Terahertz Frequencies," IEEE Trans. Nanotech. 4, 289-296 (2005).
[CrossRef]

IRE Trans. on Ant. and. Prop. (1)

G. Goubau, Waves on interfaces. IRE Trans. on Ant. and. Prop. 7, 140-146 (1959).
[CrossRef]

J. Appl. Phys. (1)

G. Goubau, "Surface Waves and Their Application to Transmission Lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and M Mitteman, "Metall wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (1)

X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677, (2002).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?," Proc. IEEE 93, 1722-1743 (2005).
[CrossRef]

Other (4)

R. K. Hoffmann, Integrated Microwave Circuits (Springer, Berlin 1983).

N. Marcuvitz, "Coaxial Waveguides" in Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 72-80.

P. W. Hawkes, The Physics of Transmission Lines at High and Very High Frequencies (Academic Press, 1970).

H. Hertz, Gesammelte Werke (J. A. Barth , Leipzig, 1894).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the transmitter chip. The inner electrode has a diameter of 90 μm, the outer electrode has an inner diameter of 290 μm with a 66 μm wide gap for the connecting line of the inner electrode. (b) Schematic diagram of the probe-tip. (c) Cross-section of the experimental setup. The probe-tip is kept in a fixed position, while all other components are freely positionable with motorized translation stages.

Fig. 2.
Fig. 2.

(a) Drawing of the simulation model. The wire has a radius r and is coated with a dielectric of thickness d. The simulation domain is limited by a cylinder of radius R and length L. For the uncoated wire d equals zero. (b) Calculated attenuation for an uncoated copper wire with 25 μm radius as a function of R at 500 GHz. The inset shows a comparison of frequency-dependent attenuation data calculated with the semi-analytical model from Ref. [10] and HFSS (R = 30 mm) for an uncoated Cu wire with 1 mm radius.

Fig. 3.
Fig. 3.

Measured THz free-space radiation signals in dependence of transmitter to probe distance. The signals are vertically shifted for clarity.

Fig. 4.
Fig. 4.

(a) The electric field transients of THz pulses are sampled after propagating the indicated distances along the coated wire. For clarity, the peak of the first pulse is set to 0 ps. (b) Comparison of pulse shapes for the uncoated and coated wire after propagating 1 cm and 9 cm, respectively. The pulses are normalized and shifted in time for best overlap.

Fig. 5.
Fig. 5.

(a) Frequency-dependent amplitude attenuation of the coated and the uncoated wire. (b) Frequency-dependent effective permittivity of the coated and the uncoated wire. Experimentally determined data are plotted as closed circles. Numerical data are plotted as solid lines. In all cases the dielectric has a thickness of 10 μm.

Metrics